智能优化算法应用:基于北方苍鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于北方苍鹰算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于北方苍鹰算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.北方苍鹰算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用北方苍鹰算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.北方苍鹰算法

北方苍鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/124539198
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

北方苍鹰算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明北方苍鹰算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/205473.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

生成式人工智能笔记-AIGC笔记

生成式人工智能笔记-AIGC笔记 十多年前,人工智能还只是一个不被人看好的小众领域,但是现在,它却已经成了街头巷尾的热点谈资,几乎任何事情都可以和人工智能联系在一起。 人工智能包括基础层、技术层和应用层。 基础层是人工智能…

收藏!当今最流行的10 种人工智能算法

人工智能的概念始于1956年的达特茅斯会议,由于受到数据、计算力、智能算法等多方面因素的影响,人工智能技术和应用发展经历了多次高潮和低谷。 2022年以来,以ChatGPT为代表的大模型一夜爆火,它能够基于在预训练阶段所见的模式和统…

Python中如何判断List中是否包含某个元素

更多资料获取 📚 个人网站:ipengtao.com 在Python中,判断一个列表(List)是否包含某个特定元素是常见的任务之一。在本文中,将深入探讨多种判断List成员包含性的方法,并提供丰富的示例代码&…

每日一题:LeetCode-11.盛水最多的容器

每日一题系列(day 13) 前言: 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 &#x1f50e…

solidity案例详解(六)服务评价合约

有服务提供商和用户两类实体,其中服务提供商部署合约,默认诚信为true,用户负责使用智能合约接受服务及评价,服务提供商的评价信息存储在一个映射中,可以根据服务提 供商的地址来查找评价信息。用户评价信息&#xff0c…

添加新公司代码的配置步骤-Part1

原文地址:配置公司代码 概述 我们生活在一个充满活力的时代,公司经常买卖子公司。对于已经使用 SAP 的公司来说,增加收购就成为一个项目。我开发了一个电子表格,其中包含向您的结构添加新公司代码所需的所有配置更改。当然&…

虚拟数据优化器VDO

本章主要介绍虚拟化数据优化器。 什么是虚拟数据优化器VDO创建VDO设备以节约硬盘空间 了解什么是VDO VDO全称是Virtual Data Optimize(虚拟数据优化),主要是为了节省硬盘空间。 现在假设有两个文件file1和 file2,大小都是10G。file1和 f…

java学习part40collections工具类

162-集合框架-Collections工具类的使用_哔哩哔哩_bilibili 1.collections工具类 感觉类似c的algorithm包,提供了很多集合的操作方法 2.排序 3.查找 4.复制替换 5.添加,同步

Dockerfile详解#如何编写自己的Dockerfile

文章目录 前言编写规则指令详解FROM:基础镜像LABEL:镜像描述信息MAINTAINER:添加作者信息COPY:从宿主机复制文件到镜像中ADD:从宿主机复制文件到镜像中WORKDIR:设置工作目录 前言 Dockerfile是编写docker镜…

Vue 静态渲染 v-pre

v-pre 指令&#xff1a;用于阻止 Vue 解析这个标签&#xff0c;直接渲染到页面中。 语法格式&#xff1a; <div v-pre> {{ 数据 }} </div> 基础使用&#xff1a; <template><h3>静态渲染 v-pre</h3><p v-pre>静态渲染&#xff1a;{{ n…

C++刷题 -- 链表

C刷题 – 链表 文章目录 C刷题 -- 链表1.删除链表的倒数第 N 个结点2.链表相交3.环形链表 1.删除链表的倒数第 N 个结点 https://leetcode.cn/problems/remove-nth-node-from-end-of-list/ 快慢指针的应用 fast指针先移动N步&#xff0c;slow依然指向head&#xff1b;然后fa…

短视频文案生成器有哪些?【2024新版短视频文案生成器】

在当今数字化社交时代&#xff0c;短视频已经成为人们生活中不可或缺的一部分。然而&#xff0c;想要制作引人注目、独具创意的短视频&#xff0c;光有精彩的画面和音效可能不够&#xff0c;一个吸引眼球的短视频文案也是至关重要的。本文将专心分享短视频文案生成器的种类&…

OpenTiny Vue 3.12.0 发布:文档大优化!增加水印和二维码两个新组件

你好&#xff0c;我是 Kagol。 非常高兴跟大家宣布&#xff0c;2023年11月30日&#xff0c;OpenTiny Vue 发布了 v3.12.0 &#x1f389;。 OpenTiny 每次大版本发布&#xff0c;都会给大家带来一些实用的新特性&#xff0c;10.24 我们发布了 v3.11.0 版本&#xff0c;增加了富…

企业级自动化测试理论(目标、框架要素、深入理解测试金字塔)

1. 自动化测试的目标 自动化测试的目标是加快研发过程&#xff0c;而不是试图省钱。 迅速检测出新版本中不稳定的变更。 迅速暴露程序回归的错误。 迅速报告问题&#xff0c; 因为这会使程序错误修改更容易。 为了达到目标&#xff0c;所需要的测试能力要求 测试技术&…

YITH WooCommerce Questions and Answers电商网站问答功能高级版

点击阅读YITH WooCommerce Questions and Answers电商网站问答功能高级版原文 YITH WooCommerce Questions and Answers电商网站问答高级版的作用在您的产品页面中构建强大的问答部分&#xff0c;以便您的客户可以找到问题的答案并毫无疑问地购买。 您如何从中受益&#xff1…

LabVIEW远程监控

LabVIEW远程监控 远程监控的应用场景 从办公室远程监控工厂车间的测试设备。 在世界另一端的偏远地区监控客户现场的发电设备。 从公司远程监控外场的产品。 技术更新与方法 自2018年以来&#xff0c;NI对基于Web的应用程序支持大幅增长。一些最初的方法&#xff08;如Lab…

3.镜像加速器

目录 1 阿里云 2 网易云 从网络上拉取镜像的时候使用默认的源可能会慢&#xff0c;用国内的源会快一些 1 阿里云 访问 阿里云-计算&#xff0c;为了无法计算的价值 然后登录&#xff0c;登录后搜索 容器镜像服务 点击容器镜像服务 点击管理控制台 点击 镜像工具->镜像…

【web安全】文件包含漏洞详细整理

前言 菜某的笔记总结&#xff0c;如有错误请指正。 本文用的是PHP语言作为案例 文件包含漏洞的概念 开发者使用include&#xff08;&#xff09;等函数&#xff0c;可以把别的文件中的代码引入当前文件中执行&#xff0c;而又没有对用户输入的内容进行充分的过滤&#xff0…

5G入门到精通 - 5G的十大关键技术

文章目录 一、网络切片二、自组织网络三、D2D技术四、低时延技术五、MIMO技术六、毫米波七、内容分发网络八、M2M技术九、频谱共享十、信息中心网络 一、网络切片 5G中的网络切片是一项关键技术&#xff0c;它允许将整个5G网络分割成多个独立的虚拟网络&#xff0c;每个虚拟网络…

CodeBlocks添加头文件,解决fatal error: ui.h No such file or directory

问题描述 在使用codeblocks工具进行LVGL仿真过程中报错&#xff0c;找不到头文件 原因分析&#xff1a; 没有将头文件加入编辑器搜索的目录中&#xff0c;编译时找不到头文件。 解决方案&#xff1a; 将要包含的头文件的目录加进去就可以了