粘包指的是发送方在发送数据时,多个数据包被合并成一个大的数据包发送到接收方,接收方在接收时无法准确地区分各个数据包的边界,从而导致数据粘在一起。
半包指的是发送方发送的数据包被拆分成了多个小的数据包,在接收方接收时,无法完整地接收到一个数据包,导致数据包的边界不完整,出现了"半个"数据包。
现象分析
粘包
- 现象
- 发送 abc def,接收 abcdef
- 原因
- 应用层
- 接收方 ByteBuf 设置太大(Netty 默认 1024)
- 传输层-网络层
- 滑动窗口:假设发送方 256 bytes 表示一个完整报文,但由于接收方处理不及时且**窗口大小足够大(大于256 bytes),这 256 bytes 字节就会缓冲在接收方的滑动窗口中,**当滑动窗口中缓冲了多个报文就会粘包
- Nagle 算法:会造成粘包
- 应用层
半包
- 现象
- 发送 abcdef,接收 abc def
- 原因
- 应用层
- 接收方 ByteBuf 小于实际发送数据量
- 传输层-网络层
- 滑动窗口:假设接收方的窗口只剩了 128 bytes,发送方的报文大小是 256 bytes,这时接收方窗口中无法容纳发送方的全部报文,发送方只能先发送前 128 bytes,等待 ack 后才能发送剩余部分,这就造成了半包
- 数据链路层
- MSS 限制:当发送的数据超过 MSS 限制后,会将数据切分发送,就会造成半包
- 应用层
本质
发生粘包与半包现象的本质是因为 TCP 是流式协议,消息无边界
具体原因
由于TCP协议本身的机制(面向连接的可靠地协议-三次握手机制)客户端与服务器会维持一个连接(Channel),数据在连接不断开的情况下,可以持续不断地将多个数据包发往服务器,但是如果发送的网络数据包太小,那么他本身会启用Nagle算法(可配置是否启用)对较小的数据包进行合并(基于此,TCP的网络延迟要UDP的高些)然后再发送(超时或者包大小足够)。那么这样的话,服务器在接收到消息(数据流)的时候就无法区分哪些数据包是客户端自己分开发送的,这样产生了粘包;服务器在接收到数据库后,放到缓冲区中,如果消息没有被及时从缓存区取走,下次在取数据的时候可能就会出现一次取出多个数据包的情况,造成粘包现象。
而对于UDP,本身作为无连接的不可靠的传输协议(适合频繁发送较小的数据包),他不会对数据包进行合并发送(也就没有Nagle算法之说了),他直接是一端发送什么数据,直接就发出去了,既然他不会对数据合并,每一个数据包都是完整的(数据+UDP头+IP头等等发一次数据封装一次)也就没有粘包一说了。
半包产生的原因就简单的多:可能是IP分片传输导致的,也可能是传输过程中丢失部分包导致出现的半包,还有可能就是一个包可能被分成了两次传输,在取数据的时候,先取到了一部分(还可能与接收的缓冲区大小有关系),总之就是一个数据包被分成了多次接收。
发生TCP粘包或拆包有很多原因,但是常见原因无非就是:
1、要发送的数据大于TCP发送缓冲区剩余空间大小,将会发生拆包。
2、待发送数据大于MSS(最大报文长度),TCP在传输前将进行拆包。
3、要发送的数据小于TCP发送缓冲区的大小,TCP将多次写入缓冲区的数据一次发送出去,将会发生粘包。
4、接收数据端的应用层没有及时读取接收缓冲区中的数据,将发生粘包。
粘包与半包的解决方法
1 短链接
客户端每次向服务器发送数据以后,就与服务器断开连接,此时的消息边界为连接建立到连接断开。这时便无需使用滑动窗口等技术来缓冲数据,则不会发生粘包现象。但如果一次性数据发送过多,接收方无法一次性容纳所有数据,还是会发生半包现象,所以短链接无法解决半包现象(UDP)
2 使用分隔符
在数据包中添加边界:在数据包中添加特殊的边界符号,如换行符或者其他特殊字符,接收方根据边界符号来切分数据包
行解码器
行解码器的是通过分隔符对数据进行拆分来解决粘包半包问题的
可以通过LineBasedFrameDecoder(int maxLength)
来拆分以换行符(\n)为分隔符的数据,也可以通过DelimiterBasedFrameDecoder(int maxFrameLength, ByteBuf... delimiters)
来指定通过什么分隔符来拆分数据(可以传入多个分隔符)
两种解码器都需要传入数据的最大长度,若超出最大长度,会抛出TooLongFrameException
异常
3 定长解码器
客户端于服务器约定一个最大长度,保证客户端每次发送的数据长度都不会大于该长度。若发送数据长度不足则需要补齐至该长度
服务器接收数据时,将接收到的数据按照约定的最大长度进行拆分,即使发送过程中产生了粘包,也可以通过定长解码器将数据正确地进行拆分。服务端需要用到FixedLengthFrameDecoder
对数据进行定长解码,具体使用方法如下
ch.pipeline().addLast(new FixedLengthFrameDecoder(16));
客户端代码
客户端发送数据的代码如下
// 约定最大长度为16
final int maxLength = 16;
// 被发送的数据
char c = 'a';
// 向服务器发送10个报文
for (int i = 0; i < 10; i++) {ByteBuf buffer = ctx.alloc().buffer(maxLength);// 定长byte数组,未使用部分会以0进行填充byte[] bytes = new byte[maxLength];// 生成长度为0~15的数据for (int j = 0; j < (int)(Math.random()*(maxLength-1)); j++) {bytes[j] = (byte) c;}buffer.writeBytes(bytes);c++;// 将数据发送给服务器ctx.writeAndFlush(buffer);
}Copy
服务器代码
使用FixedLengthFrameDecoder
对粘包数据进行拆分
// 通过定长解码器对粘包数据进行拆分
ch.pipeline().addLast(new FixedLengthFrameDecoder(16));
长度字段解码器
在传送数据时可以在数据中添加一个用于表示有用数据长度的字段,在解码时读取出这个用于表明长度的字段,同时读取其他相关参数,即可知道最终需要的数据是什么样子的
LengthFieldBasedFrameDecoder
解码器可以提供更为丰富的拆分方法,其构造方法有五个参数
public LengthFieldBasedFrameDecoder(int maxFrameLength,int lengthFieldOffset, int lengthFieldLength,int lengthAdjustment, int initialBytesToStrip)Copy
参数解析
- maxFrameLength 数据最大长度
- 表示数据的最大长度(包括附加信息、长度标识等内容)
- lengthFieldOffset 数据长度标识的起始偏移量
- 用于指明数据第几个字节开始是用于标识有用字节长度的,因为前面可能还有其他附加信息
- lengthFieldLength 数据长度标识所占字节数(用于指明有用数据的长度)
- 数据中用于表示有用数据长度的标识所占的字节数
- lengthAdjustment 长度表示与有用数据的偏移量
- 用于指明数据长度标识和有用数据之间的距离,因为两者之间还可能有附加信息
- initialBytesToStrip 数据读取起点
- 读取起点,不读取 0 ~ initialBytesToStrip 之间的数据
参数图解
lengthFieldOffset = 0
lengthFieldLength = 2
lengthAdjustment = 0
initialBytesToStrip = 0 (= do not strip header)BEFORE DECODE (14 bytes) AFTER DECODE (14 bytes)
+--------+----------------+ +--------+----------------+
| Length | Actual Content |----->| Length | Actual Content |
| 0x000C | "HELLO, WORLD" | | 0x000C | "HELLO, WORLD" |
+--------+----------------+ +--------+----------------+Copy
从0开始即为长度标识,长度标识长度为2个字节
0x000C 即为后面 HELLO, WORLD
的长度
lengthFieldOffset = 0
lengthFieldLength = 2
lengthAdjustment = 0
initialBytesToStrip = 2 (= the length of the Length field)BEFORE DECODE (14 bytes) AFTER DECODE (12 bytes)
+--------+----------------+ +----------------+
| Length | Actual Content |----->| Actual Content |
| 0x000C | "HELLO, WORLD" | | "HELLO, WORLD" |
+--------+----------------+ +----------------+Copy
从0开始即为长度标识,长度标识长度为2个字节,读取时从第二个字节开始读取(此处即跳过长度标识)
因为跳过了用于表示长度的2个字节,所以此处直接读取HELLO, WORLD
lengthFieldOffset = 2 (= the length of Header 1)
lengthFieldLength = 3
lengthAdjustment = 0
initialBytesToStrip = 0BEFORE DECODE (17 bytes) AFTER DECODE (17 bytes)
+----------+----------+----------------+ +----------+----------+----------------+
| Header 1 | Length | Actual Content |----->| Header 1 | Length | Actual Content |
| 0xCAFE | 0x00000C | "HELLO, WORLD" | | 0xCAFE | 0x00000C | "HELLO, WORLD" |
+----------+----------+----------------+ +----------+----------+----------------+Copy
长度标识前面还有2个字节的其他内容(0xCAFE),第三个字节开始才是长度标识,长度表示长度为3个字节(0x00000C)
Header1中有附加信息,读取长度标识时需要跳过这些附加信息来获取长度
lengthFieldOffset = 0
lengthFieldLength = 3
lengthAdjustment = 2 (= the length of Header 1)
initialBytesToStrip = 0BEFORE DECODE (17 bytes) AFTER DECODE (17 bytes)
+----------+----------+----------------+ +----------+----------+----------------+
| Length | Header 1 | Actual Content |----->| Length | Header 1 | Actual Content |
| 0x00000C | 0xCAFE | "HELLO, WORLD" | | 0x00000C | 0xCAFE | "HELLO, WORLD" |
+----------+----------+----------------+ +----------+----------+----------------+Copy
从0开始即为长度标识,长度标识长度为3个字节,长度标识之后还有2个字节的其他内容(0xCAFE)
长度标识(0x00000C)表示的是从其后lengthAdjustment(2个字节)开始的数据的长度,即HELLO, WORLD
,不包括0xCAFE
lengthFieldOffset = 1 (= the length of HDR1)
lengthFieldLength = 2
lengthAdjustment = 1 (= the length of HDR2)
initialBytesToStrip = 3 (= the length of HDR1 + LEN)BEFORE DECODE (16 bytes) AFTER DECODE (13 bytes)
+------+--------+------+----------------+ +------+----------------+
| HDR1 | Length | HDR2 | Actual Content |----->| HDR2 | Actual Content |
| 0xCA | 0x000C | 0xFE | "HELLO, WORLD" | | 0xFE | "HELLO, WORLD" |
+------+--------+------+----------------+ +------+----------------+Copy
长度标识前面有1个字节的其他内容,后面也有1个字节的其他内容,读取时从长度标识之后3个字节处开始读取,即读取 0xFE HELLO, WORLD