分类与群组:解析分类和聚类分析技术

目录

  • 写在开头
  • 1. 数据分类与聚类简介
    • 1.1 分类分析
    • 1.2 聚类分析
    • 1.3 对比分析
  • 2. 如何学习分类和聚类分析技术
    • 2.1 学习理论知识
      • 2.1.1 数学知识
      • 2.1.2 编程基础
      • 2.1.3 深入学习算法
        • 2.1.3.1 分类算法学习举例
        • 2.1.3.2 聚类算法学习举例
      • 2.1.4 参与实战
    • 2.2 应用成功案例
      • 2.2.1 分类算法成功案例
      • 2.2.2 聚类算法成功案例
      • 2.3 Python代码实践
        • 2.3.1 分类分析代码示例
        • 2.3.2 聚类分析代码示例
  • 3. 数据分析的严谨性与优化
    • 3.1 数据预处理
      • 3.1.1 对于分类的影响
      • 3.1.2 对于聚类的影响
    • 3.2 模型选择与评估
      • 3.2.1 分类算法对比
      • 3.2.2 聚类算法对比
    • 3.3 持续改进与监控
  • 4. 实际应用案例展示
    • 4.1 案例背景
    • 4.2 数据收集与预处理
    • 4.3 分类分析:用户价值分类
    • 4.4 聚类分析:用户行为群组
  • 写在最后

写在开头

数据分析在现代业务中扮演着关键角色,而分类和聚类分析技术是从庞大数据集中提取有用信息的强大工具。通过将数据分为不同类别和群组,我们可以实现更精确的数据分析,为业务决策提供深刻洞察。本文将深入探讨分类和聚类分析的原理、应用场景,并使用Python代码演示实际操作。

1. 数据分类与聚类简介

1.1 分类分析

数据分类是将数据划分为不同的类别,使得同一类别内的数据具有相似性。这有助于我们理解数据的结构,识别潜在模式,并为未来的预测建模奠定基础。例如,我们可以通过客户行为数据将用户分为高、中、低价值客户类别,从而精准定位市场策略。

分类一般的步骤如下:

1). 数据收集: 收集包含标签信息的数据集,其中每个样本都有一个已知的类别。

2). 数据清洗与预处理: 处理缺失值、异常值,进行特征缩放、标准化,处理类别特征,确保数据质量。

3). 特征工程: 选择、创建、转换特征,提高模型对数据的表达能力。

4). 数据划分: 将数据集划分为训练集和测试集,用于训练和评估模型。

5). 选择模型: 根据任务选择合适的分类算法,如决策树、支持向量机、逻辑回归等。

6). 模型训练: 使用训练集对模型进行训练,学习数据的模式与特征之间的关系。

7). 模型评估: 使用测试集评估模型性能,通常通过准确性、精确度、召回率、F1 分数等指标进行评估。

8). 调优: 根据评估结果进行模型调优,可能包括调整超参数、使用特征选择、调整模型结构等。

9). 模型应用: 在实际场景中应用训练好的模型进行预测,对新数据进行分类。

1.2 聚类分析

聚类分析是将数据点分组成具有相似特征的簇,而不需要预先定义类别。这有助于我们发现数据中的内在结构,识别潜在的群组,并为个性化营销、产品推荐等提供依据。例如,可以通过购物行为将顾客分为购买型、浏览型等群组。

聚类一般的步骤如下:

1). 数据收集: 收集无标签的数据集,即每个样本没有预先定义的类别。

2). 数据清洗与预处理: 同样需要处理缺失值、异常值,进行特征缩放、标准化,确保数据质量。

3). 特征工程: 同样适用于聚类任务,选择、创建、转换特征。

4). 选择算法: 根据数据特点选择适用的聚类算法,如K均值、层次聚类、DBSCAN等。

5). 确定簇数: 对于某些算法,需要事先确定簇的数量,可通过肘部法则、轮廓系数等方法确定。

6). 模型训练: 使用选择的聚类算法对数据进行训练,寻找数据内在的簇结构。

7). 结果解释: 根据聚类结果进行解释,理解每个簇的特征及其内在关系。

8). 调优: 根据需要调整簇数或调整算法参数。

9). 结果应用: 将训练好的模型应用于实际场景,对新数据进行聚类。

1.3 对比分析

对比分类和聚类两种技术,整理表格如下:

特征分类聚类
目标预测输入数据的类别将数据划分为相似的群组
数据处理特征工程,标注训练集特征工程,无监督学习
任务类型监督学习无监督学习
标签已知类别无需已知类别
目标函数交叉熵、准确率等样本间的距离或相似度
输出类别标签
常用算法决策树、支持向量机、神经网络、随机森林、K近邻K均值、层次聚类、DBSCAN、高斯混合模型
优化方法超参数调优、特征选择、集成学习超参数调优、特征缩放、降维、密度估计
注意事项处理不平衡数据、选择适当的评估指标、处理缺失数据选择合适的距离度量、处理噪声和异常值、确定簇的数量
应用场景垃圾邮件过滤、图像分类、疾病诊断市场细分、社交网络分析、异常检测、图像分割

在实际应用中,具体选择算法和方法要根据问题的性质、数据的特点以及任务的需求来进行权衡和调整。

2. 如何学习分类和聚类分析技术

为了学习这两种强大的数据分析技术,我们可以按以下步骤进行:

2.1 学习理论知识

2.1.1 数学知识

绝大多数算法的底层逻辑都基于数学原理。算法是通过数学模型和逻辑推导来解决问题的一种方法。数学提供了一种抽象和形式化的语言,用于描述问题、定义数据结构和设计算法。不同类型的算法,如排序算法、搜索算法、图算法等,都涉及到数学概念和方法。尤其是在机器学习和人工智能领域,算法通常建立在数学模型和统计学的基础上。

线性代数:

  • 矩阵乘法: 理解矩阵乘法的定义和运算规则,这对于理解神经网络的前向传播过程至关重要。

  • 逆矩阵: 了解逆矩阵的概念,对于某些算法如线性回归的最小二乘法求解是必须的。

  • 特征值和特征向量: 掌握特征值和特征向量的计算方法,对于PCA等降维算法有深远的影响。

概率统计:

  • 条件概率: 了解在给定条件下事件发生的概率,这在贝叶斯方法中应用广泛。

  • 期望和方差: 熟悉概率分布的期望和方差,这是理解模型预测结果不确定性的基础。

2.1.2 编程基础

无论是使用传统的机器学习算法还是深度学习模型,都需要编写代码来训练模型、进行预测和评估性能。编程能力让你能够直接将理论知识转化为实际应用,对算法的细节有更深入的理解。

除此以外,我们在进行数据预处理、特征工程、调参优化、扩展和自定义时都要用到代码。在分类和聚类任务中,数据通常需要进行清理、归一化、编码等预处理步骤;特征工程也是提高模型性能的关键步骤,通过编程你能够灵活地进行特征的选择、变换和创建;有编程基础后,你可以方便地进行模型调参和性能优化,调整分类器或聚类算法的参数、采用不同的特征集合以及尝试不同的模型架构;可以编写脚本来处理大量数据、自动运行模型训练和评估、以及进行结果的可视化,使得算法的应用更加高效和可扩展;有时标准的算法库无法满足特定需求,编程技能让你能够灵活地构建定制化的模型或算法。

Python或R:

  • Numpy和Pandas: 学会使用Numpy进行高性能的数值运算,以及Pandas进行数据处理和分析。

  • 基本编程概念: 掌握基本的编程概念,如条件语句、循环结构和函数定义。

2.1.3 深入学习算法

2.1.3.1 分类算法学习举例
  • 决策树:

    • 信息熵和基尼系数: 熟悉信息熵和基尼系数的概念,了解它们在决策树中的应用,以及如何选择最优特征进行节点分裂。

    • 生长和剪枝: 了解决策树的生长过程,以及剪枝的方法,平衡模型的复杂度和性能。

  • 支持向量机(SVM):

    • 核技巧: 理解核函数的作用和不同类型的核函数,以及如何通过核技巧将非线性问题映射到高维空间。

    • 软间隔和硬间隔: 了解软间隔和硬间隔的区别,以及在面对噪声和非线性可分问题时的应用。

  • 神经网络:

    • 神经元和激活函数: 理解神经网络的基本组成,学会激活函数的选择和作用。

    • 反向传播算法: 了解反向传播算法,掌握权重更新的原理和实现。

2.1.3.2 聚类算法学习举例
  • K均值聚类:

    • 簇的形成: 了解K均值聚类是如何通过迭代将数据划分为K个簇的,以及簇内样本的相似度计算。

    • 初始值选择: 熟悉不同初始值对聚类结果的影响,理解K均值++算法的作用。

  • 层次聚类:

    • 凝聚和分裂: 理解凝聚层次聚类和分裂层次聚类的区别,以及它们是如何构建聚类层次结构的。

    • 链接方法: 了解单链接、完全链接和平均链接等不同的链接方法,它们对聚类结果的影响。

  • DBSCAN:

    • 密度连接: 理解DBSCAN如何通过密度连接确定核心点、边界点和噪声点。

2.1.4 参与实战

将算法应用于实际业务问题,尝试用分类和聚类来解决实际问题,在实践中不断成长。

2.2 应用成功案例

2.2.1 分类算法成功案例

  • 垃圾邮件过滤:

    • 场景: 通过对邮件内容进行分类,识别和过滤出垃圾邮件。
    • 案例: 收集大量带有标签的邮件数据,使用分类算法(如朴素贝叶斯或支持向量机)训练模型,实现高效的垃圾邮件识别。
  • 医学影像诊断:

    • 场景: 利用医学影像数据进行疾病分类和诊断,例如乳腺癌检测。
    • 案例: 使用深度学习技术,训练卷积神经网络(CNN)对X光、MRI或CT扫描图像进行分类,帮助医生提高疾病诊断的准确性。
  • 金融欺诈检测:

    • 场景: 识别金融交易中的异常行为,预防信用卡欺诈等问题。
    • 案例: 基于历史交易数据,使用机器学习模型(如随机森林或支持向量机)进行分类࿰

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/202309.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

16、XSS——会话管理

文章目录 一、web会话管理概述1.1 会话管理1.2 为什么需要会话管理?1.3 常见的web应用会话管理的方式 二、会话管理方式2.1 基于server端的session的管理方式2.2 cookie-based的管理方式2.3 token-based的管理方式 三、安全问题 一、web会话管理概述 1.1 会话管理 …

加速度jsudo:IC商城系统4.0版正式发布 PCB计价电子元器件商城

近日,在加速度软件新品会发布会上,Mike正式公布了其4.0版本的电子元器件商城系统,展示了迭代后的强大新功能。在招募了数十家元器件销售、运营和老板测试体验后,获得了大家一致的好评。其中,中国电子南京某子公司董事长…

VMware虚拟机系统CentOS镜像的下载

文章目录 阿里云下载官网下载参考文档 一些小版本可能过时或者其他原因已经不能存在了,只有大版本号最新的,或者其他最新版本 阿里云下载 1-百度搜索:阿里云 2-找到开发者社区 3-找到下载,选择镜像 4-选择系统 5-点击镜像地…

vivado时序方法检查3

TIMING-7 &#xff1a; 相关时钟间无公共节点 时钟 <clock_name> 与 <clock_name> 之间相互关联 &#xff08; 一起定时 &#xff09;&#xff0c; 但两者间无公共节点。此设置在硬件中可能失败。要查找这些时钟之间的时序路径&#xff0c; 请运行以下命令 &a…

javascript 访问器属性创建的三种方式

出自 javascript高级程序设计-第六章6.1节 javascript 访问器属性创建的三种方式&#xff1a; 以下year字段都是访问器属性&#xff0c;_year、 edition是数据属性。 var book1 { _year: 2000, edition: 1 }; Object.defineProperty(book1, "year", { get: fun…

岚图追光PHEV 25.28万元起售,开卷混动豪华轿车

作者&#xff5c;Amy 编辑&#xff5c;德新 12月5日晚&#xff0c;2023岚图科技日上&#xff0c;岚图汽车正式发布了其新一代SOA电子电气架构天元架构&#xff0c;并宣布了以“新行政电动旗舰”为定位的岚图追光PHEV正式上市。 岚图追光PHEV是岚图汽车旗下首款电混轿车&#x…

selenium自动化测试:xpath八种定位方式!

01、前言 如果可以的话&#xff0c;请先关注&#xff08;专栏和账号&#xff09;&#xff0c;然后点赞和收藏&#xff0c;最后学习和进步。你的支持是我继续写下去的最大动力&#xff0c;个人定当倾囊而送&#xff0c;不负众望。谢谢&#xff01;&#xff01;&#xff01; 1.…

【springboot】整合redis和定制化

1.前提条件:docker安装好了redis,确定redis可以访问 可选软件: 2.测试代码 (1)redis依赖 org.springframework.boot spring-boot-starter-data-redis (2)配置redis &#xff08;3&#xff09; 注入 Resource StringRedisTemplate stringRedisTemplate; 这里如果用Autowi…

一台服务器能放多少个网站?

这个问题有点意思&#xff0c;确实是有不少用户会问到&#xff0c;但其实这个问题的真正意思是&#xff0c;一台服务器上面放多少个网站不卡&#xff0c;打开不慢 。其实这个问题又有点复杂&#xff0c;一台服务器放多少个网站不会卡&#xff0c;跟很多因素有关&#xff0c;比如…

docker安装及简单使用(Linux版本)

文章目录 前言一、docker安装二、docker命令pull&#xff08;安装镜像&#xff09;images&#xff08;查看镜像&#xff09;run&#xff08;创建容器&#xff09;删除容器exec&#xff08;进入运行中的容器&#xff09;常用命令 总结如有启发&#xff0c;可点赞收藏哟~ 前言 ht…

Python 进阶(十三):JSON 序列化和反序列化(json 模块)

大家好&#xff0c;我是水滴~~ 本篇文章主要介绍json模块的功能&#xff0c;包括将Python对象序列化到文件、将Python对象序列化为字符串、序列化时类型的对照表、将文件中JSON数据反序列化为Python对象&#xff0c;将JSON字符串反序列化为Python对象、反序列化时类型的对照表…

Python 模块的使用方法

Python 模块是一种组织和封装代码的方式&#xff0c;允许你将相关的功能和变量放在一个单独的文件中&#xff0c;以便在其他程序中重复使用。在Python中&#xff0c;模块是一种可执行的Python脚本&#xff0c;其文件扩展名为 .py。这里&#xff0c;我将详细讲解Python模块的使用…

2023中医药国际传承传播大会在深圳召开

12月2日&#xff0c;2023中医药国际传承传播大会在深圳召开&#xff0c;大会由世界针灸学会联合会、中新社国际传播集团、中国新闻图片网、中国民族医药学会、中国针灸学会主办&#xff0c;世界针灸学会联合会健康传播工作委员会、中新雅视文化发展有限公司公司与深圳巨邦传媒集…

播放pcap抓包文件中的amr-wb、amr-nb、evs声音

前言 由于wireshark并不能解析amr-wb、evs数据&#xff0c;所以也就没办法播放响应的音频。在遇到问题时&#xff0c;想还原抓包的数据是否正常就很难受。为了解决这个问题&#xff0c;我看了RFC4867&#xff0c;想着自己写一个解包小工具&#xff0c;最后彻底放弃。。感觉太复…

Qt Creator :Analyze heob 使用教程

功能&#xff1a;在windows系统上检测和调试软件代码的内存泄漏情况&#xff1b; 使用环境 &#xff1a;需要下载 heob和dwarfstack 把dwarfstack动态库放在heob的执行程序目录下 使用步骤&#xff1a; 第三步&#xff1a;配置启动调试程序 第四步&#xff1a;配置heob的路…

什么因素会影响葡萄酒陈酿的能力?

糖、酸和酚类与水的比例是葡萄酒陈酿程度的关键决定因素&#xff0c;收获前葡萄中的水分越少&#xff0c;产生的葡萄酒就越有可能具有一定的陈酿潜力。那么葡萄品种、气候和葡萄栽培实践的过程就相当重要了&#xff0c;对陈酿的时间发挥了重要的作用。皮较厚的葡萄品种&#xf…

C++ 中的运算符重载(二)

运算符重载的实例和应用 运算符重载是一种非常实用和有趣的特性&#xff0c;它可以让我们对自定义类型的数据进行各种操作&#xff0c;从而实现一些复杂和高级的功能。下面我们就来介绍一些运算符重载的实例和应用&#xff0c;以及它们的代码和效果&#xff1a; 重载赋值运算…

docker:安装nginx并部署一个前端项目

文章目录 导语传统方式1、下载镜像2、copy项目文件到docker中3、访问 打包镜像的方式1、创建 Dockerfile2、创建 Nginx 配置文件3、构建 Docker 镜像4、运行 Docker 容器5、访问前端项目 总结 导语 这篇博客将介绍 docker 使用 nginx 部署前端项目的两种方式 传统方式 1、下…

C语言给定数字0-9各若干个。你可以以任意顺序排列这些数字,但必须全部使用。目标是使得最后得到的数尽可能小(注意0不能做首位)

这个题目要求的输出是一串数字&#xff01;&#xff01;&#xff01; 不是下面&#xff1a;输入在一行中给出 10 个非负整数&#xff0c;顺序表示我们拥有数字 0、数字 1、……数字 9 的个数。整数间用一个空格分隔。10 个数字的总个数不超过 50&#xff0c;且至少拥有 1 个非…

Python自动化测试之破解图文验证码

对于web应用程序来讲&#xff0c;处于安全性考虑&#xff0c;在登录的时候&#xff0c;都会设置验证码&#xff0c; 验证码的类型种类繁多&#xff0c;有图片中辨别数字字母的&#xff0c;有点击图片中指定的文字的&#xff0c;也有算术计算结果的&#xff0c;再复杂一点就是滑…