背景
开始文章之前可以先介绍下何为code interpreter。所谓code interpreter从实际操作讲就是让llm模型具备了立马执行代码、并把执行结果作为下轮模型生成的物料。这里面有两个关键词“立马执行代码”、“结果作为物料”,其实如果llm不具备控制计算机得到执行结果,并把生成的执行结果作为下一轮控制的物料,而只是能够生成静态的代码,那么llm不过还是一个静态的语言生成模型。但如果llm可以把生成的代码执行得到结果,那llm就是一个控制器和仿真器,根据需要生成代码动态的串接、补充需要的物料,以及对可能的选择做预测推断,让llm的能力直接无限制的扩张;这就是code interpreter的价值所在,让llm具备动态的自组装、调整可能组合、对决策做精准和模糊的仿真预测的能力。也就是说llm具备了解决实际问题的能力,而不是只能形而上的思考给出一些指导理论文案,而是可以切身的去尝试,从形而上到形而下的具体落地动作完全打通。
这也就是为什么code interpreter只是增加一个把生成代码可执行,这么一个看起来不太大的变化,让各大佬为之欢呼的原因。当然以现在的llm根据语言生成code的能力和code执行通过率(环境该有包没有),离稳健的商用系统还是有距离的。当然这些能力的提升事需要llm全面提升,甚至需要构建一个系统来解决的;这个一定事需要时间来沉淀和打磨,当然这也是机会所在。
例子:
1.图生成,传入原始图,指令生成抠人像的code,code interpreter处理结果,然后在对图像做image2image生成或者补背景;生成图在做线稿生成
2.文本生成,llm生成的文本有不合规多标点符号共现,指令生成正则处理code,code interpreter处理结果,然后在做下一步的文本抽摘要,或者文本改写
3.文本和图结合,生成文本和图做相似度计算,不合适让llm操控图继续生成,知道符合预期为止,甚至可以对前后生成图做风格判断,保证前后风格一致
技术点
要实现能够把生成的代码立刻执行的能力,就需要llm具备把生成代码做解释、编译、转成机器码执行。然后代码的编译、执行其实每种语言都是有编译器和执行器的,如果我们可以把代码发到对应语言的编译器、执行器那么就可以把代码操控cpu计算结果。要实现这样的能力,至少有4种办法(以python语言举例):
1.利用python的exec方法,把这个python解释器起一个flask服务,llm生成的代码作为参数传到这个服务器,执行结果返回给llm服务器
2.利用python interpreter方法来实现,起一个服务器接llm生成code,执行完结果返回给llm服务器
3.把llm生成的code存成py文件,llm服务器python os执行code
4.用ipython作为python代码解释服务器,llm生成代码送过来执行结果返回llm服务器
exec方法
prog = '''# 导入需要的库
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns# 生成示例数据,假设是关于学生的成绩,年龄,性别等信息
df = pd.DataFrame({"name": ["Alice", "Bob", "Charlie", "David", "Eve"],"score": [90, 80, 70, 60, 50],"age": [18, 19, 20, 21, 22],"gender": ["F", "M", "M", "M", "F"]
})# 查看数据的基本信息,如行数,列数,数据类型,缺失值等
df.info()# 查看数据的统计描述,如均值,标准差,最大值,最小值等
df.describe()# 选择需要分析的列,假设是score, age, gender
cols = ["score", "age", "gender"]# 绘制直方图,查看每列的分布情况
df[cols].hist(figsize=(10, 8))
plt.show()# 绘制箱线图,查看每列的异常值情况
df[cols].boxplot(figsize=(10, 8))
plt.show()# 绘制散点图矩阵,查看每两列之间的相关性
sns.pairplot(df[cols])
plt.show()'''
c = exec(prog)
python interpreter方法
参考下面一篇文章即可
https://mp.weixin.qq.com/s/_6E_yZ6g2X28tT2WAHeT7Q
python执行py文件方法
# 所以可以通过os.system来执行py代码
import os
os.system('python file_name.py')
ipython调度python编译器
from jupyter_client import KernelManager
import re class JupyterNotebook:def __init__(self):self.km = KernelManager()self.km.start_kernel()self.kc = self.km.client()def clean_output(self,outputs):outputs_only_str = list()for i in outputs:if type(i)==dict:if ('text/plain' in list(i.keys())):outputs_only_str.append(i['text/plain'])elif type(i)==str:outputs_only_str.append(i)elif type(i) == list:error_msg = '\n'.join(i)error_msg = re.sub(r'\x1b\[.*?m', '', error_msg)outputs_only_str.append(error_msg)return '\n'.join(outputs_only_str).strip()def add_and_run(self, code_string):# Execute the code and get the execution countmsg_id = self.kc.execute(code_string)# Wait for and return the outputsoutputs = []error_flag = Falsewhile True:try:msg = self.kc.get_iopub_msg(timeout=10)msg_type = msg['header']['msg_type']content = msg['content']if msg_type == 'execute_result':outputs.append(content['data'])elif msg_type == 'stream':outputs.append(content['text'])elif msg_type == 'error':error_flag = Trueoutputs.append(content['traceback'])# If the execution state of the kernel is idle, it means the cell finished executingif msg_type == 'status' and content['execution_state'] == 'idle':breakexcept:break#print(outputs)return self.clean_output(outputs), error_flag
还可以jupyter_client做执行器,flask部署成服务的例子,可以参考:https://github.com/ricklamers/gpt-code-ui.git
LLM生成代码技术点
class BaseCodeInterpreter:def __init__(self):self.dialog = [{"role": "system", "content": CODE_INTERPRETER_SYSTEM_PROMPT,},#{"role": "user", "content": "How can I use BeautifulSoup to scrape a website and extract all the URLs on a page?"},#{"role": "assistant", "content": "I think I need to use beatifulsoup to find current korean president,"}]self.nb = JupyterNotebook()#把llm生成的code部分抽取出来@staticmethoddef extract_code_blocks(text : str):pattern = r'```(?:python\n)?(.*?)```' # Match optional 'python\n' but don't capture itcode_blocks = re.findall(pattern, text, re.DOTALL)return [block.strip() for block in code_blocks]@staticmethoddef parse_last_answer(text: str) -> str:return text.split(E_INST)[-1]#把llm生成的抽取的code塞到jupyter解释器执行,得到结果返回给用户def execute_code_and_return_output(self, code_str: str) -> str:outputs, error_flag = self.nb.add_and_run(code_str)return outputs, error_flag
llm模型把生成代码生成能力封装到进去,code interpreter能力就具备了,下面代码model_path换成chatglm、codegeex2-6b都行。
class LlamaCodeInterpreter(BaseCodeInterpreter):def __init__(self, model_path: str, load_in_8bit : bool = False, load_in_4bit : bool = False):#self.model = LlamaForCausalLM.from_pretrained(model_path, device_map="auto", load_in_4bit = load_in_4bit,load_in_8bit=load_in_8bit, torch_dtype=torch.float16,use_safetensors=True)#self.tokenizer = LlamaTokenizer.from_pretrained(model_path)self.tokenizer = AutoTokenizer.from_pretrained(model_path,trust_remote_code=True)self.model = AutoModel.from_pretrained(model_path,trust_remote_code=True).cuda()'''# Add special tokenspecial_tokens_dict = dict()if self.tokenizer.pad_token is None:special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKENif self.tokenizer.eos_token is None:special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKENif self.tokenizer.bos_token is None:special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKENif self.tokenizer.unk_token is None:special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKENsmart_tokenizer_and_embedding_resize(special_tokens_dict=special_tokens_dict,tokenizer=self.tokenizer,model=self.model,)'''self.dialog = [{"role": "system", "content": CODE_INTERPRETER_SYSTEM_PROMPT + "\nUse code to answer",},#{"role": "user", "content": "How can I use BeautifulSoup to scrape a website and extract all the URLs on a page?"},#{"role": "assistant", "content": "I think I need to use beatifulsoup to find current korean president,"}]self.nb = JupyterNotebook()def dialog_to_prompt(self, dialog: List[Dialog], SYS_PROMPT: str = '') -> torch.Tensor:"""code borrowed from : https://github.com/facebookresearch/llama/blob/main/llama/generation.py"""if dialog[0]["role"] != "system":dialog = [{"role": "system","content": SYS_PROMPT,}] + dialogdialog = [{"role": dialog[1]["role"],"content": B_SYS + dialog[0]["content"] + E_SYS + dialog[1]["content"],}] + dialog[2:]assert all([msg["role"] == "user" for msg in dialog[::2]]) and all([msg["role"] == "assistant" for msg in dialog[1::2]]), ("model only supports 'system', 'user' and 'assistant' roles, ""starting with 'system', then 'user' and alternating (u/a/u/a/u...)")#print(dialog[::2], dialog[1::2],)dialog_tokens: List[int] = sum([self.tokenizer.encode(f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ",)for prompt, answer in zip(dialog[::2],dialog[1::2],)],[],)#assert (# dialog[-1]["role"] == "user"#), f"Last message must be from user, got {dialog[-1]['role']}"dialog_tokens += self.tokenizer.encode(f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}",)return torch.tensor(dialog_tokens).unsqueeze(0)def hard_coded_eos_splitter(self):self.dialog[-1]['content'] = self.dialog[-1]['content'].split(DEFAULT_EOS_TOKEN)[0]def chat(self, user_message: str, VERBOSE :bool = False):self.dialog.append({"role": "user", "content": user_message})code_block_output = ""attempt = 0 img_data = Noneif VERBOSE:print('###User : ' + Fore.BLUE + Style.BRIGHT + user_message + Style.RESET_ALL)print('\n###Assistant : ')while True:if attempt > 3:breakdialog_tokens = self.dialog_to_prompt(dialog=self.dialog)gen_tokens = self.model.generate(dialog_tokens.cuda(),max_new_tokens=4096,top_p=0.8,temperature=0.95,do_sample=True,use_cache=True)generated_text_all = self.tokenizer.batch_decode(gen_tokens)[0]generated_text = self.tokenizer.batch_decode(gen_tokens[:, dialog_tokens.shape[1]:])[0]last_answer = self.parse_last_answer(generated_text_all)generated_code_blocks = self.extract_code_blocks(generated_text)if len(generated_code_blocks) > 0:# Find the position of the first code block in the last answerfirst_code_block_pos = generated_text.find(generated_code_blocks[0]) if generated_code_blocks else -1text_before_first_code_block = generated_text if first_code_block_pos == -1 else generated_text[:first_code_block_pos]if VERBOSE:print(Fore.GREEN + text_before_first_code_block + Style.RESET_ALL)if VERBOSE:print(Fore.YELLOW + generated_code_blocks[0]+ '\n```\n' + Style.RESET_ALL)code_block_output, error_flag = self.execute_code_and_return_output(generated_code_blocks[0])code_block_output = f'{code_block_output}'if code_block_output is not None:code_block_output = code_block_output.strip()code_block_output_str = f'\n```RESULTS\n{code_block_output}\n```\n'if VERBOSE:print(Fore.LIGHTBLACK_EX + code_block_output_str + Style.RESET_ALL)#markdown = Markdown(code_block_output_str)print(markdown)gen_final = f'{text_before_first_code_block}{generated_code_blocks[0]}\n```{code_block_output_str}'if self.dialog[-1]['role'] == 'user':self.dialog.append({"role": "assistant", "content": gen_final})elif self.dialog[-1]['role'] == 'assistant':self.dialog[-1]['content'] += gen_finalelse:if self.dialog[-1]['role'] == 'user':self.dialog.append({"role": "assistant", "content": generated_text})else:self.dialog[-1]['content'] += generated_text# no code found breakif VERBOSE:print(Fore.GREEN + generated_text + Style.RESET_ALL)break# early stop if DEFAULT_EOS_TOKEN in self.dialog[-1]['content']:self.hard_coded_eos_splitter()if img_data is not None:return f'{self.dialog[-1]}\n![plot](data:image/png;base64,{img_data})'return self.dialog[-1]self.hard_coded_eos_splitter()attempt += 1#print(f"====Attempt[{attempt}]====\n{self.dialog[-1]['content']}")#print(self.dialog)if img_data is not None:return f'{self.dialog[-1]}\n![plot](data:image/png;base64,{img_data})'return self.dialog[-1]
执行结果如下:
蓝色字部分是用户输入问题,黄色字部分是llm生成的code,灰色部分是python解释器对code执行生成的结果。
小结
1.文章从技术趋势的酵素介绍了code interpreter的价值和有意义的方向在何
2.介绍了code interpreter实现的核心问题,就是如何把llm生成的code,可以调器编译器执行
3.以python语言为例,列举了4种可行的code到代码执行的方法,并给出了具体的实现代码
4.介绍了如何把llm和代码解释器封装成代码到解释器执行结果的实现,并给出了代码
5.给出了一个整合好的项目实现,并给出了一个简单的冒泡排序实现例子