C++入门【2-C++ 数据类型】

C++ 数据类型

使用编程语言进行编程时,需要用到各种变量来存储各种信息。变量保留的是它所存储的值的内存位置。这意味着,当您创建一个变量时,就会在内存中保留一些空间。

您可能需要存储各种数据类型(比如字符型、宽字符型、整型、浮点型、双浮点型、布尔型等)的信息,操作系统会根据变量的数据类型,来分配内存和决定在保留内存中存储什么。

基本的内置类型

C++ 为程序员提供了种类丰富的内置数据类型和用户自定义的数据类型。下表列出了七种基本的 C++ 数据类型:

类型

关键字

布尔型

bool

字符型

char

整型

int

浮点型

float

双浮点型

double

无类型

void

宽字符型

wchar_t

其实 wchar_t 是这样来的:

typedef short int wchar_t;

所以 wchar_t 实际上的空间是和 short int 一样。

一些基本类型可以使用一个或多个类型修饰符进行修饰:

  • signed
  • unsigned
  • short
  • long

下表显示了各种变量类型在内存中存储值时需要占用的内存,以及该类型的变量所能存储的最大值和最小值。

注意:不同系统会有所差异,一字节为 8 位。

注意:默认情况下,int、short、long都是带符号的,即 signed。

注意:long int 8 个字节,int 都是 4 个字节,早期的 C 编译器定义了 long int 占用 4 个字节,int 占用 2 个字节,新版的 C/C++ 标准兼容了早期的这一设定。

类型

范围

char

1 个字节

-128 到 127 或者 0 到 255

unsigned char

1 个字节

0 到 255

signed char

1 个字节

-128 到 127

int

4 个字节

-2147483648 到 2147483647

unsigned int

4 个字节

0 到 4294967295

signed int

4 个字节

-2147483648 到 2147483647

short int

2 个字节

-32768 到 32767

unsigned short int

2 个字节

0 到 65,535

signed short int

2 个字节

-32768 到 32767

long int

8 个字节

-9,223,372,036,854,775,808 到 9,223,372,036,854,775,807

signed long int

8 个字节

-9,223,372,036,854,775,808 到 9,223,372,036,854,775,807

unsigned long int

8 个字节

0 到 18,446,744,073,709,551,615

float

4 个字节

精度型占4个字节(32位)内存空间,+/- 3.4e +/- 38 (~7 个数字)

double

8 个字节

双精度型占8 个字节(64位)内存空间,+/- 1.7e +/- 308 (~15 个数字)

long long

8 个字节

双精度型占8 个字节(64位)内存空间,表示 -9,223,372,036,854,775,807 到 9,223,372,036,854,775,807 的范围

long double

16 个字节

长双精度型 16 个字节(128位)内存空间,可提供18-19位有效数字。

wchar_t

2 或 4 个字节

1 个宽字符

注意,各种类型的存储大小与系统位数有关,但目前通用的以64位系统为主。以下列出了32位系统与64位系统的存储大小的差别(windows 相同):

从上表可得知,变量的大小会根据编译器和所使用的电脑而有所不同。

下面实例会输出您电脑上各种数据类型的大小。

#include<iostream>  
#include <limits>using namespace std;  int main()  
{  cout << "type: \t\t" << "************size**************"<< endl;  cout << "bool: \t\t" << "所占字节数:" << sizeof(bool);  cout << "\t最大值:" << (numeric_limits<bool>::max)();  cout << "\t\t最小值:" << (numeric_limits<bool>::min)() << endl;  cout << "char: \t\t" << "所占字节数:" << sizeof(char);  cout << "\t最大值:" << (numeric_limits<char>::max)();  cout << "\t\t最小值:" << (numeric_limits<char>::min)() << endl;  cout << "signed char: \t" << "所占字节数:" << sizeof(signed char);  cout << "\t最大值:" << (numeric_limits<signed char>::max)();  cout << "\t\t最小值:" << (numeric_limits<signed char>::min)() << endl;  cout << "unsigned char: \t" << "所占字节数:" << sizeof(unsigned char);  cout << "\t最大值:" << (numeric_limits<unsigned char>::max)();  cout << "\t\t最小值:" << (numeric_limits<unsigned char>::min)() << endl;  cout << "wchar_t: \t" << "所占字节数:" << sizeof(wchar_t);  cout << "\t最大值:" << (numeric_limits<wchar_t>::max)();  cout << "\t\t最小值:" << (numeric_limits<wchar_t>::min)() << endl;  cout << "short: \t\t" << "所占字节数:" << sizeof(short);  cout << "\t最大值:" << (numeric_limits<short>::max)();  cout << "\t\t最小值:" << (numeric_limits<short>::min)() << endl;  cout << "int: \t\t" << "所占字节数:" << sizeof(int);  cout << "\t最大值:" << (numeric_limits<int>::max)();  cout << "\t最小值:" << (numeric_limits<int>::min)() << endl;  cout << "unsigned: \t" << "所占字节数:" << sizeof(unsigned);  cout << "\t最大值:" << (numeric_limits<unsigned>::max)();  cout << "\t最小值:" << (numeric_limits<unsigned>::min)() << endl;  cout << "long: \t\t" << "所占字节数:" << sizeof(long);  cout << "\t最大值:" << (numeric_limits<long>::max)();  cout << "\t最小值:" << (numeric_limits<long>::min)() << endl;  cout << "unsigned long: \t" << "所占字节数:" << sizeof(unsigned long);  cout << "\t最大值:" << (numeric_limits<unsigned long>::max)();  cout << "\t最小值:" << (numeric_limits<unsigned long>::min)() << endl;  cout << "double: \t" << "所占字节数:" << sizeof(double);  cout << "\t最大值:" << (numeric_limits<double>::max)();  cout << "\t最小值:" << (numeric_limits<double>::min)() << endl;  cout << "long double: \t" << "所占字节数:" << sizeof(long double);  cout << "\t最大值:" << (numeric_limits<long double>::max)();  cout << "\t最小值:" << (numeric_limits<long double>::min)() << endl;  cout << "float: \t\t" << "所占字节数:" << sizeof(float);  cout << "\t最大值:" << (numeric_limits<float>::max)();  cout << "\t最小值:" << (numeric_limits<float>::min)() << endl;  cout << "size_t: \t" << "所占字节数:" << sizeof(size_t);  cout << "\t最大值:" << (numeric_limits<size_t>::max)();  cout << "\t最小值:" << (numeric_limits<size_t>::min)() << endl;  cout << "string: \t" << "所占字节数:" << sizeof(string) << endl;  // << "\t最大值:" << (numeric_limits<string>::max)() << "\t最小值:" << (numeric_limits<string>::min)() << endl;  cout << "type: \t\t" << "************size**************"<< endl;  return 0;  
}

本实例使用了 endl,这将在每一行后插入一个换行符, 运算符用于向屏幕传多个值,sizeof() 运算符用来获取各种数据类型的大小。

当上面的代码被编译和执行时,它会产生以下的结果,结果会根据所使用的计算机而有所不同:

type:         ************size**************
bool:         所占字节数:1    最大值:1        最小值:0
char:         所占字节数:1    最大值:        最小值:?
signed char:     所占字节数:1    最大值:        最小值:?
unsigned char:     所占字节数:1    最大值:?        最小值:
wchar_t:     所占字节数:4    最大值:2147483647        最小值:-2147483648
short:         所占字节数:2    最大值:32767        最小值:-32768
int:         所占字节数:4    最大值:2147483647    最小值:-2147483648
unsigned:     所占字节数:4    最大值:4294967295    最小值:0
long:         所占字节数:8    最大值:9223372036854775807    最小值:-9223372036854775808
unsigned long:     所占字节数:8    最大值:18446744073709551615    最小值:0
double:     所占字节数:8    最大值:1.79769e+308    最小值:2.22507e-308
long double:     所占字节数:16    最大值:1.18973e+4932    最小值:3.3621e-4932
float:         所占字节数:4    最大值:3.40282e+38    最小值:1.17549e-38
size_t:     所占字节数:8    最大值:18446744073709551615    最小值:0
string:     所占字节数:24
type:         ************size**************

typedef 声明

您可以使用 typedef 为一个已有的类型取一个新的名字。下面是使用 typedef 定义一个新类型的语法:

typedef type newname;

例如,下面的语句会告诉编译器,feet 是 int 的另一个名称:

typedef int feet;

现在,下面的声明是完全合法的,它创建了一个整型变量 distance:

feet distance;

枚举类型

枚举类型(enumeration)是C++中的一种派生数据类型,它是由用户定义的若干枚举常量的集合。

如果一个变量只有几种可能的值,可以定义为枚举(enumeration)类型。所谓"枚举"是指将变量的值一一列举出来,变量的值只能在列举出来的值的范围内。

创建枚举,需要使用关键字 enum。枚举类型的一般形式为:

enum 枚举名{ 标识符[=整型常数], 标识符[=整型常数], ... 标识符[=整型常数] } 枚举变量;

如果枚举没有初始化, 即省掉"=整型常数"时, 则从第一个标识符开始。

例如,下面的代码定义了一个颜色枚举,变量 c 的类型为 color。最后,c 被赋值为 "blue"。

enum color { red, green, blue } c;
c = blue;

默认情况下,第一个名称的值为 0,第二个名称的值为 1,第三个名称的值为 2,以此类推。但是,您也可以给名称赋予一个特殊的值,只需要添加一个初始值即可。例如,在下面的枚举中,green 的值为 5。

enum color { red, green=5, blue };

在这里,blue 的值为 6,因为默认情况下,每个名称都会比它前面一个名称大 1,但 red 的值依然为 0。

类型转换

类型转换是将一个数据类型的值转换为另一种数据类型的值。

C++ 中有四种类型转换:静态转换、动态转换、常量转换和重新解释转换。

静态转换(Static Cast)

静态转换是将一种数据类型的值强制转换为另一种数据类型的值。

静态转换通常用于比较类型相似的对象之间的转换,例如将 int 类型转换为 float 类型。

静态转换不进行任何运行时类型检查,因此可能会导致运行时错误。

int i = 10; float f = static_cast<float>(i); // 静态将int类型转换为float类型

动态转换(Dynamic Cast)

动态转换通常用于将一个基类指针或引用转换为派生类指针或引用。动态转换在运行时进行类型检查,如果不能进行转换则返回空指针或引发异常。

class Base {};

class Derived : public Base {};

Base* ptr_base = new Derived;

Derived* ptr_derived = dynamic_cast<Derived*>(ptr_base); // 将基类指针转换为派生类指针

常量转换(Const Cast)

常量转换用于将 const 类型的对象转换为非 const 类型的对象。

常量转换只能用于转换掉 const 属性,不能改变对象的类型。

const int i = 10;

int& r = const_cast<int&>(i); // 常量转换,将const int转换为int

重新解释转换(Reinterpret Cast)

重新解释转换将一个数据类型的值重新解释为另一个数据类型的值,通常用于在不同的数据类型之间进行转换。

重新解释转换不进行任何类型检查,因此可能会导致未定义的行为。

int i = 10;

float f = reinterpret_cast<float&>(i); // 重新解释将int类型转换为float类型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/201163.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

android实战项目之实现预览图片、视频、音频

引言 项目中经常用遇到视频、图片、音频的预览需要&#xff0c;采用PictureSelector第三方库&#xff0c;方便解决 方式 1. 引入第三方库&#xff0c;目前最新的版本v3.11.1。其他的版本可能用法不一样&#xff0c;有很多差异 implementation io.github.lucksiege:picturese…

玄子Share-CSS3 弹性布局知识手册

玄子Share-CSS3 弹性布局知识手册 Flexbox Layout&#xff08;弹性盒布局&#xff09;是一种在 CSS 中用于设计复杂布局结构的模型。它提供了更加高效、简便的方式来对容器内的子元素进行排列、对齐和分布 主轴和交叉轴 使用弹性布局&#xff0c;最重要的一个概念就是主轴与…

CoDeF视频处理——视频风格转化部署使用与源码解析

一、算法简介与功能 CoDef是作为一种新型的视频表示形式&#xff0c;它包括一个规范内容场&#xff0c;聚合整个视频中的静态内容&#xff0c;以及一个时间变形场&#xff0c;记录了从规范图像&#xff08;即从规范内容场渲染而成&#xff09;到每个单独帧的变换过程。针对目标…

JavaScript中的this指向:如何避免常见的this陷阱

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;JavaScript篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来JavaScript篇专栏内容:JavaScript-this指向 目录 this指向详解 强行改变 this 指向 修改上下文中的this…

17、pytest自动使用fixture

官方实例 # content of test_autouse_fixture.py import pytestpytest.fixture def first_entry():return "a"pytest.fixture def order():return []pytest.fixture(autouseTrue) def append_first(order, first_entry):return order.append(first_entry)def test_s…

数学建模-基于机器学习的家政行业整体素质提升因素分析

基于机器学习的家政行业整体素质提升因素分析 整体求解过程概述(摘要) 家政服务业即为家庭提供多种类服务的专门行业&#xff0c;在第三产业中占有重要地位。但近年来&#xff0c;由于人工智能家居产业的发展与客户对家政从业者的要求水平不断提高&#xff0c;家政行业仍面对较…

graphics.h安装后依旧报错

问题解决一&#xff1a; 我在网上找了很多&#xff0c;都说找到graphics.h这个文件&#xff0c;放到include这个目录下&#xff0c;我照做了&#xff0c;然后 当我进行编译时&#xff0c;自动跳到graphics.h这个文件并出现一堆报错 问题解决二&#xff1a; 看一下这两个文件是…

c++拷贝与替换算法

一&#xff1a; copy 算法是 C STL 中的一个常用算法&#xff0c;用于将一个范围内的元素复制到另一个范围。它的函数原型如下&#xff1a; template<class InputIt, class OutputIt> OutputIt copy(InputIt first, InputIt last, OutputIt d_first); 这个算法接受三…

Linux库之动态库静态库

一、什么是库&#xff08;Library&#xff09; 二、库的分类 三、静态库、动态库优缺点 四、静态库的制作和使用 五、动态库的制作和使用 SO-NAME–解决主版本号之间的兼容问题 基于符号的版本机制 共享库系统路径 共享库的查找过程 有用的环境变量 gcc 编译器常用选项 Linux共…

STM32F1外部中断EXTI

目录 1. EXTI简介 2. EXTI基本结构 3. AFIO复用IO口 4. EXTI框图 5. EXTI程序配置 5.1 首先先配置要使用的GPIO口的引脚 5.2 配置AFIO数据选择器&#xff0c;选择想要中断的引脚 5.3 EXTI配置 1. EXTI简介 EXTI&#xff08;Extern Interrupt&#xff09;外部中…

思腾云计算中心 | 5千平米超大空间,基础设施完善,提供裸金属GPU算力租赁业务

2021年&#xff0c;思腾合力全资收购包头市易慧信息科技有限公司&#xff0c;正式开启云计算业务。思腾云计算中心占地2400平米&#xff0c;位于包头市稀土高新区&#xff0c;毗邻多家知名企业&#xff0c;地理位置优越&#xff0c;交通便利&#xff0c;是区内重要的信息化产业…

配置集群免密登录

文章目录 前言配置集群免密登录1. 设置主机名与 IP 地址的映射关系2. 生成 SSH 密钥对3. 将公钥复制到集群节点4. 测试免密登录5. 配置节点之间互相免密登录 总结 前言 本文介绍了如何配置集群之间免密登录&#xff0c;以便在搭建集群环境时方便地进行节点之间的通信。通过设置…

【开源】基于Vue.js的公司货物订单管理系统

文末获取源码&#xff0c;项目编号&#xff1a; S 082 。 \color{red}{文末获取源码&#xff0c;项目编号&#xff1a;S082。} 文末获取源码&#xff0c;项目编号&#xff1a;S082。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 客户管理模块2.2 商品维护模块2.3 供…

19、pytest通过mark标记测试函数

官方实例 [pytest] markers slow:marks tests as slow(deselect with -m "not slow")serial# content of test_mark.py import pytestpytest.mark.slow def test_mark_function():print("test_mark_function was invoked")assert 0解读与实操 通过使用p…

FairGuard无缝兼容小米澎湃OS、ColorOS 14 、鸿蒙4!

随着移动互联网时代的发展&#xff0c;各大手机厂商为打造生态系统、构建自身的技术壁垒&#xff0c;纷纷投身自研操作系统。 而对于一款游戏安全产品&#xff0c;在不同操作系统下&#xff0c;是否能够无缝兼容并且提供稳定的、高强度的加密保护&#xff0c;成了行业的一大痛…

7、信息收集(2)

文章目录 一、目录扫描1.1 目录扫描的原因1.2 目录扫描方法 二、指纹识别2.1 系统指纹识别2.2 中间件指纹识别2.3 web程序指纹识别2.4 防火墙指纹识别2.5 其他工具使用 三、Google Hacking3.1 逻辑运算符3.2 基本语法3.3 相关案例 一、目录扫描 1.1 目录扫描的原因 寻找网站后…

docker中mysql的数据迁移

在Docker中进行MySQL数据迁移通常涉及将数据从一个MySQL容器导出&#xff0c;并将其导入到另一个容器或主机上的MySQL实例中。以下是一般步骤&#xff1a; 步骤 1: 在源 MySQL 容器中导出数据 进入源 MySQL 容器&#xff1a; docker exec -it <source_mysql_container_name…

翻译: 大语言模型LLMs能做什么和不能做什么 保存笔记What LLMs can and cannot do

生成式 AI 是一项惊人的技术&#xff0c;但它并非万能。在这个视频中&#xff0c;我们将仔细看看大型语言模型&#xff08;LLM&#xff09;能做什么&#xff0c;不能做什么。我们将从我发现的一个有用的心理模型开始&#xff0c;了解它能做什么&#xff0c;然后一起看看 LLM 的…

怎么验证公钥和私钥是一对

文章目录 前言ssh-keygen 和 openssl两种证书的内容对比 从私钥提取公钥OPENSSH和PEM两种密钥格式相互转化OpenSSH 格式私钥转换成 OpenSSL PEM 格式私钥OpenSSL PEM 格式私钥转换成 OpenSSH 格式私钥OpenSSH 格式公钥生成 OpenSSL PEM 格式公钥OpenSSL PEM 格式公钥生成 OpenS…

【Azure 架构师学习笔记】- Azure Databricks (2) -集群

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (1) - 环境搭建 前言 在上文中提到了ADB 的其中一个核心就是集群&#xff0c;所以这里专门研究一下ADB 的集群。 ADB 集群 首先了解一下ADB…