基于YOLOv8深度学习的120种犬类检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战、狗类检测、犬种识别

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的路面坑洞检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:犬类检测与种类识别技术不仅能够提升社会治理效率、改进公众安全与健康水平,同时还能促进人们对动物福利的关注。本文基于YOLOv8深度学习框架,通过20630张图片,训练了一个进行犬类检测与识别的检测模型,可进行120种犬类的检测与识别平均准确率为82%。并基于此模型开发了一款带UI界面的犬类检测与识别系统,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

狗的检测与种类识别技术对于多个领域具有重要意义。
首先,此技术可以用于公共安全和执法。例如,警方和安保人员可以利用它快速识别搜救犬、警犬以及潜在的威胁性狗类,提高工作效率和响应速度。其次,宠物行业也可受益匪浅,此技术有助于宠物店、兽医诊所和动物收容所更准确地记录和管理犬只信息,提供更个性化的服务。
城市管理方面,犬类检测与识别技术能够辅助城市管理者监控流浪狗的数量和分布,及时处理可能的公共卫生问题和安全风险。同样地,野生动物保护项目可以使用这一技术来研究和监控野狗对生态系统的影响。
除此之外,这一技术还可应用在机场或边境检查站,协助有关部门在物流运输中防止违禁品的走私,例如借助识别药物探测犬等专业犬种的能力。牧场和农场领域中,犬类检测与识别有助于牧羊人更精准地管理牧羊犬,以保护牲畜。
消费领域,通过犬的识别技术,可以为狗主人提供一个趣味性的交互平台,例如通过宠物APP来分享自己宠物的特征,参与社区内的互动和活动。同时,犬类识别系统也能成为教育工具,帮助人们了解不同的犬种及其特性,提高公众对动物多样性的认识和尊重。
总而言之,犬类检测与种类识别技术的发展将带来社会治理效率的提升,宠物产业的增长,公众安全与健康水平的改进,同时还能促进人们对动物福利的关注。随着技术的不断进步,这一领域的应用场景有望进一步拓宽。

博主通过搜集不同犬类的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的犬类检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述
检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行120种犬类的目标检测与识别,详细类别见下文数据集说明;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于不同种类的犬类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含20630张图片,其中训练集包含16464张图片验证集包含4166张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述
类别中文名称:

[‘吉娃娃’, ‘日本宫廷犬’, ‘马耳他犬’, ‘北京犬’, ‘西施犬’, ‘查理王小猎犬’, ‘蝴蝶犬’, ‘玩具梗’, ‘罗得西亚背脊犬’, ‘阿富汗猎犬’, ‘巴吉度猎犬’, ‘比格犬’, ‘血猎犬’, ‘布鲁提克犬’, ‘黑棕猎浣熊犬’, ‘树猎犬’, ‘英国猎狐犬’, ‘红骨猎犬’, ‘俄罗斯猎狼犬’, ‘爱尔兰狼犬’, ‘意大利灰狗’, ‘小猎犬’, ‘伊比赞猎犬’, ‘挪威猎麋犬’, ‘水獭猎犬’, ‘萨路基犬’, ‘苏格兰猎鹿犬’, ‘威玛猎犬’, ‘斯塔福郡斗牛梗’, ‘美国斯塔福郡梗’, ‘贝灵顿梗’, ‘边境梗’, ‘凯利蓝梗’, ‘爱尔兰梗’, ‘诺福克梗’, ‘诺里奇梗’, ‘约克夏梗’, ‘刚毛狐梗’, ‘湖畔梗’, ‘锡利哈姆梗’, ‘艾尔代尔梗’, ‘凯恩梗’, ‘澳洲梗’, ‘丹迪丁蒙梗’, ‘波士顿梗’, ‘迷你雪纳瑞’, ‘巨型雪纳瑞’, ‘标准雪纳瑞’, ‘苏格兰梗’, ‘西藏梗’, ‘丝毛梗’, ‘软毛麦色梗’, ‘西高地白梗’, ‘拉萨犬’, ‘平毛寻回犬’, ‘卷毛寻回犬’, ‘金毛寻回犬’, ‘拉布拉多寻回犬’, ‘切萨皮克湾寻回犬’, ‘德国短毛指示犬’, ‘匈牙利维兹拉犬’, ‘英国塞特犬’, ‘爱尔兰塞特犬’, ‘戈登塞特犬’, ‘布列塔尼犬’, ‘克伦伯犬’, ‘英国史宾格犬’, ‘威尔士史宾格犬’, ‘可卡犬’, ‘萨塞克斯犬’, ‘爱尔兰水猎犬’, ‘匈牙利古瓦斯犬’, ‘梗犬’, ‘比利时格罗宁达尔犬’, ‘比利时马里努犬’, ‘布里亚德犬’, ‘澳洲牧羊犬’, ‘匈牙利柯蒙犬’, ‘古代英国牧羊犬’, ‘喜乐蒂牧羊犬’, ‘边境牧羊犬’, ‘边境牧羊犬’, ‘佛兰德牧羊犬’, ‘罗得维尔犬’, ‘德国牧羊犬’, ‘杜宾犬’, ‘迷你杜宾’, ‘大瑞士山地犬’, ‘伯恩山犬’, ‘阿彭策尔山地犬’, ‘恩特尔布赫山犬’, ‘拳师犬’, ‘英国斗牛犬’, ‘藏獒’, ‘法国斗牛犬’, ‘大丹犬’, ‘圣伯纳犬’, ‘美洲爱斯基摩犬’, ‘阿拉斯加雪橇犬’, ‘西伯利亚雪橇犬’, ‘猴脸梗’, ‘巴辛吉犬’, ‘巴哥犬’, ‘莱昂贝格犬’, ‘纽芬兰犬’, ‘大白熊犬’, ‘萨摩耶犬’, ‘博美犬’, ‘松狮犬’, ‘荷兰毛狮犬’, ‘布鲁塞尔格力芬犬’, ‘彭布罗克威尔士柯基犬’, ‘卡迪根威尔士柯基犬’, ‘玩具贵宾’, ‘迷你贵宾’, ‘标准贵宾’, ‘墨西哥无毛犬’, ‘澳洲野狗’, ‘亚洲野狗’, ‘非洲狩猎犬’]

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入DogData目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\DogDetection\datasets\DogData\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\DogDetection\datasets\DogData\val  # val images (relative to 'path') 128 images
test:  # val images (optional)# number of classes
nc: 120# Classes
names: ['Chihuahua', 'Japanese_spaniel', 'Maltese_dog', 'Pekinese', 'Shih-Tzu', 'Blenheim_spaniel', 'papillon', 'toy_terrier', 'Rhodesian_ridgeback', 'Afghan_hound', 'basset', 'beagle', 'bloodhound', 'bluetick', 'black-and-tan_coonhound', 'Walker_hound', 'English_foxhound', 'redbone', 'borzoi', 'Irish_wolfhound', 'Italian_greyhound', 'whippet', 'Ibizan_hound', 'Norwegian_elkhound', 'otterhound', 'Saluki', 'Scottish_deerhound', 'Weimaraner', 'Staffordshire_bullterrier', 'American_Staffordshire_terrier', 'Bedlington_terrier', 'Border_terrier', 'Kerry_blue_terrier', 'Irish_terrier', 'Norfolk_terrier', 'Norwich_terrier', 'Yorkshire_terrier', 'wire-haired_fox_terrier', 'Lakeland_terrier', 'Sealyham_terrier', 'Airedale', 'cairn', 'Australian_terrier', 'Dandie_Dinmont', 'Boston_bull', 'miniature_schnauzer', 'giant_schnauzer', 'standard_schnauzer', 'Scotch_terrier', 'Tibetan_terrier', 'silky_terrier', 'soft-coated_wheaten_terrier', 'West_Highland_white_terrier', 'Lhasa', 'flat-coated_retriever', 'curly-coated_retriever', 'golden_retriever', 'Labrador_retriever', 'Chesapeake_Bay_retriever', 'German_short-haired_pointer', 'vizsla', 'English_setter', 'Irish_setter', 'Gordon_setter', 'Brittany_spaniel', 'clumber', 'English_springer', 'Welsh_springer_spaniel', 'cocker_spaniel', 'Sussex_spaniel', 'Irish_water_spaniel', 'kuvasz', 'schipperke', 'groenendael', 'malinois', 'briard', 'kelpie', 'komondor', 'Old_English_sheepdog', 'Shetland_sheepdog', 'collie', 'Border_collie', 'Bouvier_des_Flandres', 'Rottweiler', 'German_shepherd', 'Doberman', 'miniature_pinscher', 'Greater_Swiss_Mountain_dog', 'Bernese_mountain_dog', 'Appenzeller', 'EntleBucher', 'boxer', 'bull_mastiff', 'Tibetan_mastiff', 'French_bulldog', 'Great_Dane', 'Saint_Bernard', 'Eskimo_dog', 'malamute', 'Siberian_husky', 'affenpinscher', 'basenji', 'pug', 'Leonberg', 'Newfoundland', 'Great_Pyrenees', 'Samoyed', 'Pomeranian', 'chow', 'keeshond', 'Brabancon_griffon', 'Pembroke', 'Cardigan', 'toy_poodle', 'miniature_poodle', 'standard_poodle', 'Mexican_hairless', 'dingo', 'dhole', 'African_hunting_dog']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/DogData/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型各类目标检测的mAP@0.5平均值为0.826,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/n02085620_3838.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款犬类检测与识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的犬类检测与识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/199905.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【“C++ 精妙之道:解锁模板奇谭与STL精粹之门“】

【本节目标】 1. 泛型编程 2. 函数模板 3. 类模板 4. 什么是STL 5. STL的版本 6. STL的六大组件 7. STL的重要性 8. 如何学习STL 9.STL的缺陷 1. 泛型编程 如何实现一个通用的交换函数呢? void Swap(int& left, int& right) {int temp left;lef…

odoo自定义提示性校验

背景: 在odoo16的原生的代码里,可以给按钮添加一个 confirm属性,从而达到 提示性校验的效果。 问题: 这个属性加了之后一定会弹出提示性校验的对话框,于是如何根据我们的实际业务,从后端返回提示性信息,…

5.2k Star!一个可视化全球实时天气开源项目!

大家好,本文给大家推荐一款全球实时天气开源项目:Earth。 项目简介 Earth 是一个可视化全球天气实况的项目。该项目以可视化的方式展示了全球的天气情况,提供了风、温度、相对湿度等多种天气数据,以及风、洋流和波浪的动画效果…

2-1、地址加法器CS:IP

语雀原文链接 文章目录 1、CPU组成2、通用寄存器16位寄存器的存储16位寄存器兼容8位word 和 byte进位问题 3、地址加法器不同的段地址和偏移地址表示同一个物理地址偏移地址的范围一个段的起始地址一定是16的倍数 4、CS:IPCS IP工作过程jmp修改CS:IP 5、DS和[address]DS和[add…

蓝桥杯算法心得——仙界诅咒(dfs)

大家好,我是晴天学长,搜索型的dfs,差点开二维矩阵了,仔细一想,没那么夸张啊,哈哈哈,需要的小伙伴可以关注支持一下哦!后续会继续更新的。💪💪💪 1…

性能工具之JMeter二次开发总结

文章目录 一、前言二、自定义脚本三、自定义请求编写(Java Sampler)四、自定义函数五、小结 一、前言 掌握 JMeter 的脚本编写和执行,这基本已满足大部分的性能测试需求,但是面对各种各样的项目技术方案,有些需求是需…

mybatis多表查询(xml)

多表查询都用resultMap resultMap 说白了就是他可以手动设置映射参数&#xff0c;例如 可以指定 column代表数据库的参数 property 代表实体类的参数 <id column"roleid" property"id"></id> column代表数据库的参数 property 代表实体类…

【隐私计算】安全三方计算(3PC)的加法和乘法计算协议

ABY3中采用replicated secret sharing&#xff08;复制秘密分享&#xff09;机制&#xff0c;即2-out-of-3秘密分享&#xff0c;三个参与方的每一方都拥有share中的两份。下面来看一下这样做有什么好处。 2-out-of-3秘密分享 有 x , y x, y x,y两个操作数&#xff0c;先进行秘…

列表插槽使用

{label: 是否展示,prop: isShow,solt: true, }<!--自定义列 展示 1 不展示 0 --><template slot-scope"scope" slot"display"><div style"color: red;cursor: pointer"><el-switch v-model"scope.row.display" :…

在gitlab中使用gitlab-sshd替换ssh服务

参考&#xff1a;https://docs.gitlab.com/ee/administration/operations/gitlab_sshd.html 说明 gitlab-sshd 是 OpenSSH 的轻量级替代品&#xff0c;用于提供 SSH 操作。虽然 OpenSSH 使用受限的 shell 方法&#xff0c;但 gitlab-sshd 的行为更像是一个现代的多线程服务器应…

ssm的网上奶茶店系统(有报告)。Javaee项目。

演示视频&#xff1a; ssm的网上奶茶店系统&#xff08;有报告&#xff09;。Javaee项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring SpringMvc Mybat…

智能优化算法应用:基于动物迁徙算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于动物迁徙算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于动物迁徙算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.动物迁徙算法4.实验参数设定5.算法结果6.参考…

全面解析修复msvcr120.dll缺失问题的方法,msvcr120.dll丢失的原因

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中最常见的就是“msvcr120.dll丢失”。这个错误通常会导致某些程序无法正常运行&#xff0c;给用户带来很大的困扰。那么&#xff0c;当我们遇到这个问题时&#xff0c;应该如何修复呢&#xff1f;本文…

【6】PyQt信号和槽

1. 信号和槽简介 信号和槽机制是 QT 的核心机制&#xff0c;应用于对象之间的通信 信号和槽是用来在对象间传递数据的方法当一个特定事件发生的时候&#xff0c;signal会被emit出来&#xff0c;slot调用是用来响应相应的signal的Qt中对象已经包含了许多预定义的 signal&#…

JAVA 线程池,及7大参数,4大拒绝策略详解

为什么要使用线程池 线程的生命周期&#xff1a;运行、就绪、运行、阻塞、死亡 下面是一个简单的创建多线程的方法。注意&#xff1a;工作中不可取。 创建线程的时候&#xff0c;我们避不开线程的生命周期。上面的方法虽然可以创建多线程&#xff0c;但是创建完成后&#xff0c…

Ubuntu 环境安装 Kafka、配置运行测试 Kafka 流程笔记

Kafka 介绍 Kafka 是一个由 Apache 软件基金会开发的开源流式处理平台。它被设计用于处理大规模数据流&#xff0c;提供高可靠性、高吞吐量和低延迟的消息传递系统。Kafka 可以用于构建实时数据管道和流式应用程序&#xff0c;让不同应用、系统或者数据源之间能够高效地进行数…

老师怎样避免精神内耗?

在老师的职业生涯中&#xff0c;遇到的挑战和压力可能会导致精神内耗&#xff0c;这会影响到心理和身体健康&#xff0c;更进一步影响到工作成果和个人生活。为了避免精神内耗&#xff0c;老师可以尝试以下方法&#xff1a; 1. 建立正面的心态&#xff1a;老师需要学会积极思考…

卡码网语言基础课 | 19. 洗盘子

目录 一、 栈的基本概念 二、 栈的操作 2.1 引入头文件 2.2 创建栈 2.3 栈的基本认识 三、 解答 通过本次练习&#xff0c;将学习到以下 C知识点&#xff1a; 栈的基本概念&#xff08;空栈、栈顶、栈底&#xff09;和特点&#xff08;先入后出&#xff09;入栈、出栈、获取…

PostGIS学习教程十:空间索引

PostGIS学习教程十&#xff1a;空间索引 回想一下&#xff0c;空间索引是空间数据库的三个关键特性之一。空间索引使得使用空间数据库存储大型数据集成为可能。在没有空间索引的情况下&#xff0c;对要素的任何搜索都需要对数据库中的每条记录进行"顺序扫描"。索引通…

设计模式——七大设计原则

设计模式——七大设计原则 1、单一职责原则&#xff08;SRP&#xff09;2、开放封闭原则&#xff08;OCP&#xff09;3、依赖倒转原则&#xff08;DIP&#xff09;4、里氏替换原则 (LSP)5、接口隔离原则 (ISP)6、合成/聚合复用原则 (CARP)7、迪米特法则 (LoD) 了解 设计模式 的…