MPC模型预测控制理论与实践

一、基本概念

最有控制的动机是在约束条件下达到最优的系统表现。

模型预测控制(MPC,Model Predictive Control)是通过模型来预测系统在某一未来时间段内的表现来进行优化控制,多用于数位控制,通常用离散型状态空间表达。主要有三个主要部分构成,1模型;2预测;3控制(做决策)。模型,模型可以是机理模型,也可以是一个基于数据的模型。(例如深度学习训练得到的模型)预测,建立一个模型目的主要是用来做预测。控制(做决策),控制就是需要做出动作了,控制就是采取行动执行动作。

MPC主要有三步:

在k时刻:

1、估计/测量读取当前系统状态;

2、基于u_k,u_{k+1},...,u_{k+N}来进行最优化,离散系统代价函数为

J=\sum_k^{N-1}(E_k^TQE_k+u_k^TRu_k)+E_N^TFE_N

3、只取u_k作为控制输入施加在系统上。

在下一时刻重复以上三步,在下一步进行预测时使用的就是下一步的状态值,即滚动优化控制。

二、理论原理

1、二次规划的一般形式:

\begin{aligned}\min_x&&q(x)=z^TQz+C^Tz\\s.t.&&a_i^Tz\geq b_i,\quad i\in\tau\end{aligned}

二次规划问题目前的优化理论提供了较完整的求解方法,可以利用诸多工具进行求解。这里的MPC问题最后能够归结为求解一个二次规划问题,即最小化代价函数。

2、MPC代价函数

对于一个离散系统

x(k+1)=Ax(k)+Bu(k)

在k时刻进行观测,预测从k到N时刻的状态X_k为:

X_k=\begin{pmatrix}x(k|k)\\x(k+1|k)\\x(k+2|k)\\\cdots\\x(k+N|k)\end{pmatrix}

输入U_k为:

U_k=\begin{pmatrix}u(k|k)\\u(k+1|k)\\u(k+2|k)\\\cdots\\u(k+N-1|k)\end{pmatrix}

离散系统的代价函数为:

J=\sum_{i=0}^{N1}\left(x(k+i|k)\right.^TQx(k+i|k)+u(k+i|k)^TRu(k+i|k))\\ +x(k+N)^TFx(k+N)

我们需要求解的是系统的输入u(k+i|k),这就需要我们把状态项x(k+i|k)给消除掉。可以通过传感器或者状态估计得到系统当前的状态值,利用系统初始条件x(k|k)=x_k,以及上述离散状态方程,可以得到所有状态量用输入和初始值表达的形式:

X_k=\begin{pmatrix}I\\A\\A^2\\\cdots\\A^N\end{pmatrix}x(k)+\begin{pmatrix}0&0&\ldots&0\\B&0&\ldots&0\\AB&B&\ldots&0\\\ldots&\ldots&\ldots&\ldots\\A^{N-1}B&A^{N-2}B&\ldots&B\end{pmatrix}U_k

M=\begin{bmatrix} I_{​{n\times n}} \\A_{​{n\times n}} \\A_{​{n\times n}}^2 \\. \\. \\A^N\ \end{bmatrix}$C=\begin{bmatrix}0&0&...&0\\\vdots&\vdots&...&\vdots\\0&0&&0\\B&0&...&0\\AB&B&...&0\\\vdots&\vdots&\ddots&0\\A^{N-1}B&A^{N-2}B&...&B\end{bmatrix}$,则有

{X_k}={Mx_k}+{CU_k}

代价函数可以化简为:

$\begin{aligned} &J=\sum_{i=0}^{N-1}\left(x(k+i|k)^TQx(k+i|k)\right.+u(k+i|k)^TRu(k+i|k)+x(k+N)^TFx(k+N)) \\ &\left.=\left(\begin{array}{c}x(k|k)\\x(k+1|k)\\x(k+2|k)\\\cdots\\x(k+N|k)\end{array}\right.\right)\left(\begin{array}{ccccc}Q&&&\\&Q&&\\&&Q&\\&&\cdots&\cdots&\cdots\\\cdots&\cdots&\cdots&\cdots&\cdots\\&&&&F\end{array}\right)\left(\begin{array}{c}x(k|k)\\x(k+1|k)\\x(k+2|k)\\\cdots\\\cdots\\x(k+N|k)\end{array}\right)^T \\ &\left.+U_k^T\left(\begin{array}{rrrrr}R&&&&\\&R&&&\\&&R&&\\\cdots&\cdots&\cdots&\cdots&\cdots\\&&&&R\end{array}\right.\right)U_k \end{aligned}$

$J=X_k^T\overline{Q}X_k+U_k^T\overline{R}U_k$

进一步可以化简为

J=x{_k}^TGx{_k}+U_k^THU_k+2x{_k}^TEU_k

其中$M^T\overline{Q}M=G,M^T\overline{Q}C=E,C^T\overline{Q}C+\overline{R}=H$

该代价函数可以利用二次规划进行优化。

三、代码实践

问题:

1、MPC_Test.m

%% 清屏clear ; close all; clc;%% 加载 optim package,若使用matlab,则注释掉此行pkg load optim;%%%%%%%%%%%%%%%%%%%%%%%%%%%% 第一步,定义状态空间矩阵%% 定义状态矩阵 A, n x n 矩阵A = [1 0.1; -1 2];n= size (A,1);%% 定义输入矩阵 B, n x p 矩阵B = [ 0.2 1; 0.5 2];p = size(B,2);%% 定义Q矩阵,n x n 矩阵Q=[100 0;0 1];%% 定义F矩阵,n x n 矩阵F=[100 0;0 1];%% 定义R矩阵,p x p 矩阵R=[1 0 ;0 .1];%% 定义step数量kk_steps=100; %% 定义矩阵 X_K, n x k 矩 阵X_K = zeros(n,k_steps);%% 初始状态变量值, n x 1 向量X_K(:,1) =[20;-20];%% 定义输入矩阵 U_K, p x k 矩阵U_K=zeros(p,k_steps);%% 定义预测区间KN=5;%% Call MPC_Matrices 函数 求得 E,H矩阵 [E,H]=MPC_Matrices(A,B,Q,R,F,N);%% 计算每一步的状态变量的值for k = 1 : k_steps %% 求得U_K(:,k)U_K(:,k) = Prediction(X_K(:,k),E,H,N,p);%% 计算第k+1步时状态变量的值X_K(:,k+1)=(A*X_K(:,k)+B*U_K(:,k));end%% 绘制状态变量和输入的变化subplot  (2, 1, 1);hold;for i =1 :size (X_K,1)plot (X_K(i,:));endlegend("x1","x2")hold off;subplot (2, 1, 2);hold;for i =1 : size (U_K,1)plot (U_K(i,:));endlegend("u1","u2")

2、MPC_Matrices.m


function  [E , H]=MPC_Matrices(A,B,Q,R,F,N)n=size(A,1);   % A 是 n x n 矩阵, 得到 np=size(B,2);   % B 是 n x p 矩阵, 得到 p%%%%%%%%%%%%M=[eye(n);zeros(N*n,n)]; % 初始化 M 矩阵. M 矩阵是 (N+1)n x n的, % 它上面是 n x n 个 "I", 这一步先把下半部% 分写成 0 C=zeros((N+1)*n,N*p); % 初始化 C 矩阵, 这一步令它有 (N+1)n x NP 个 0% 定义M 和 C tmp=eye(n);  %定义一个n x n 的 I 矩阵% 更新M和Cfor i=1:N % 循环,i 从 1到 Nrows =i*n+(1:n); %定义当前行数,从i x n开始,共n行 C(rows,:)=[tmp*B,C(rows-n, 1:end-p)]; %将c矩阵填满tmp= A*tmp; %每一次将tmp左乘一次AM(rows,:)=tmp; %将M矩阵写满end % 定义Q_bar和R_barQ_bar = kron(eye(N),Q);Q_bar = blkdiag(Q_bar,F);R_bar = kron(eye(N),R); % 计算G, E, HG=M'*Q_bar*M; % G: n x nE=C'*Q_bar*M; % E: NP x nH=C'*Q_bar*C+R_bar; % NP x NP end

3、Prediction.m


function u_k= Prediction(x_k,E,H,N,p)U_k = zeros(N*p,1); % NP x 1U_k = quadprog(H,E*x_k);u_k = U_k(1:p,1); % 取第一个结果end

四、应用总结

模型预测控制(Model Predictive Control, MPC)是一种先进的闭环控制算法,它通过建立系统的数学模型,预测未来一定时间内的系统状态,并基于优化算法计算出最优控制信号。MPC具有以下优缺点:

优点:

  1. 高精度控制:除了考虑当前系统状态外,还能预测未来一段时间的系统状态,因此可以更精确地控制系统;

  2. 鲁棒性强:MPC可以通过修改控制器优化问题的约束来应对外部干扰和不确定性,提高控制系统的鲁棒性;

  3. 可处理复杂系统:MPC可以建立各种复杂系统的数学模型,并通过计算机算法进行优化,适用于多变量、非线性系统等;

  4. 可满足控制要求:MPC可以将多个控制要求统一优化,因此可以满足多个控制目标同时达到。

缺点:

  1. 计算复杂:MPC优化问题通常是一个非凸、非线性的问题,要求大量的计算资源和高效的算法,导致计算复杂度很高;

  2. 运行速度慢:由于计算复杂度高,MPC的运行速度相比其他控制算法要慢很多,因此只能应用于响应速度要求不高的稳态控制系统;

  3. 受模型误差影响:MPC算法是基于系统模型来进行优化的,因此系统模型误差会直接影响算法控制效果。因此,建立准确的系统模型是MPC算法应用的关键。

MPC主要还是应用在控制领域,在自动驾驶、无人机飞行控制、平衡车的控制、四足控制中有着广泛的应用。MPC这种将优化与控制结合的思想也许可以用在更多领域

参考资料:

【【MPC模型预测控制器】1_最优化控制和基本概念】 https://www.bilibili.com/video/BV1cL411n7KV/?share_source=copy_web&vd_source=24db73a73cddacddda48febd1ffc28ef

网络资料等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/199496.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python 堆与栈

【一】堆与栈 【 1 】简介 栈(stack),有些地方称为堆栈,是一种容器,可存入数据元素、访问元素、删除元素,它的特点在于只能允许在容器的一端(称为栈顶端指标,英语:top&a…

Java_ArrayList顺序表详解

目录 前言 顺序表 ​编辑 顺序表和数组 ArrayList简介 说明 ArrayList使用​编辑 ArrayList常见操作 ArrayList实现二维数组 ArrayList的遍历 ArrayList的扩容机制 总结 前言 一个高端的程序员,往往都是数据结构学的很好,判断一个程序的优劣也是看数据结构学的好与坏.…

原生video设置控制面板controls显示哪些控件

之前我们学习了如何使用原生video播放视频 今天来一个进阶版的——设置控制面板controls显示哪些控件 先看一下当我们使用原生video时,controls属性为true时,相关代码如下: 正常的控制面板默认显示的控件有:播放、时间线、音量调…

Android基础: 使用Java代码控制 Activity类页面相互之间进行跳转 Activity页面的的启动和结束

Android基础(Activity) Activity的启动和结束 我们主要看Java代码逻辑: 第一个页面的逻辑代码 public class StartActivity01 extends AppCompatActivity implements View.OnClickListener {Overrideprotected void onCreate(Bundle saved…

香港云服务器计算型和通用型的区别

在当今数字化时代,云服务器作为企业级应用的核心设备,其性能和类型对于企业的运营和数据处理至关重要。在常见的香港云服务器类型中,通用型和计算型是最为常见的两种。那么,这两种云服务器到底有什么区别呢? 设计目标和应用场景不…

HarmonyOS开发基础(一)

HarmonyOS开发基础(一) // :装饰器:用来装饰类结构、方法、变量 Entry // Entry:标记当前组件为入口组件 Component // Component:标记为自定义组件 // struct:自定义组件,可复用的…

【LeetCode】692. 前K个高频单词

692. 前K个高频单词 描述示例解题思路及事项思路一思路二 描述 给定一个单词列表 words 和一个整数 k ,返回前 k 个出现次数最多的单词。 返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率, 按字典顺序 排序 示例 示例1 输…

Python实现FA萤火虫优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , …

15.Servlet [一篇通]

文章目录 1.Servlet 是什么2.第一个 Servlet 程序2.1创建项目2.2引入依赖2.3创建目录2.4编写代码2.5打包程序2.6部署程序2.7验证程序 3.更方便的部署方式3.1安装 Smart Tomcat 插件3.2配置 Smart Tomcat 插件 4.访问出错怎么办?4.1出现 4044.2出现 4054.3出现 5004.4出现 &quo…

移动端APP测试方法

1 APP测试基本流程 1.1 测试周期 测试周期可按项目的开发周期来确定测试时间,一般测试时间为两三周(即15个工作日),根据项目情况以及版本质量可适当缩短或延长测试时间。正式测试前先向主管确认项目排期。 1.2 测试资源 测试任…

冬天来了,波司登的高端化“春天”不远了?

最近,羽绒服频繁“贵”上热搜。 在众多热搜词条中,一条“国产羽绒服卖到7000元”的话题一度将波司登推上了舆论的风口浪尖。 对此,波司登在最新的业绩说明会上进行了回应,公司表示:“波司登旗下主品牌及子品牌将形成差…

mysql原理--InnoDB记录结构

1.InnoDB行格式 我们平时是以记录为单位来向表中插入数据的,这些记录在磁盘上的存放方式也被称为 行格式 或者 记录格式 。 设计 InnoDB 存储引擎的大叔们到现在为止设计了4种不同类型的 行格式 ,分别是 Compact 、 Redundant 、Dynamic 和 Compressed 行…

抖音直播间购物小黄车的商品详情数据SKU接口轻松拿下

我们都知道,抖音直播购物车的商品链接只能是抖音小店的,如果没有开通抖音小店,还能添加小店链接吗? 也是可以的。 抖音直播小黄车的链接可以是自己的小店商品,也可以是别人的小店商品。 抖音直播上链接有两种方式&a…

centos7防火墙开启端口

1.查看防火墙状态 firewall-cmd --state如果返回的not running,那么需要先开启防火墙 2.开启关闭防火墙 systemctl start firewalld.service systemctl stop firewalld.service systemctl restart firewalld.service3.开放指定端口 firewall-cmd --zonepublic -…

MYSQL8用户权限配置详解

单位的系统性能问题需要把Mysql5升级到Mysql8,需要用到Mysql8的一些特性来提升系统的性能。 配置用户权限过程中发现一些问题,学习并记录一下。 目录 一、环境 二、MySQL8 用户权限 2.1 账号管理权限 2.1.1 连接数据库 2.1.2 账号权限配置 2.2 密码…

Container容器技术简介

本文介绍了容器技术出现背景,docker技术与容器编排技术的简单说明 背景 在传统项目的生产环境中,迁移一个用户态进程往往非常麻烦,因为一个用户态进程背后会附带这非常多例如函数库、中间件等的依赖项,但又没有像apt和yum一样的…

洗地机哪个牌子好用?洗地机希亦、石头、添可、西屋谁的清洁力更强?

洗地机的出现极大地改善了清洁过程,提高了效率,减少了人力投入。但随着市场上洗地机的种类和功能不断增加,人们可能会感到困惑,不知道如何选择适合自己需求的机器。为了帮助消费者更好地了解洗地机的选择,今天我将带大…

java21实战record

java程序员一直以如何让代码写的可维护性跟高,不论是框架还是代码都追求精益求精。 第一阶段:由于面向对象的要求,我们会将成员变量用私有属性修饰,但是,如果面临类中的成员变量比较多的情况下,修改会非常麻…

【python】包(package)与模块(module)、import、__name__与__main__

导入模块一般写在程序最前面,且顺序为:内置模块、第三方模块、自定义模块 一、模块(module)与包(package) 模块(module)可以理解为是一个.py文件,import 模块 相当于执行…

C语言-详解指针

目录 一.内存 1.内存的定义 2.内存的结构图 二.地址 1.什么是地址 2.什么是变量的地址 三.什么是指针 1.指针的定义 四.如何获取数据存储空间的地址 1.&运算符 五.指针变量 1.什么是指针变量(一级指针变量) 2.指针变量的定义 3…