一键抠图2:C/C++实现人像抠图 (Portrait Matting)

一键抠图2:C/C++实现人像抠图 (Portrait Matting)

目录

一键抠图2:C/C++实现人像抠图 (Portrait Matting)

1. 前言

2. 抠图算法

3. 人像抠图算法MODNet

(1)模型训练

(2)将Pytorch模型转换ONNX模型

(3)将ONNX模型转换为TNN模型

4. 模型C++部署

(1)项目结构

(2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

(3)部署TNN模型

(4)CMake配置

(5)main源码

(6)源码编译和运行

5. 人像抠图效果

6. 项目源码下载

7. 人像抠图Python版本

8. 人像抠图Android版本


1. 前言

这是一键抠图项目系列之《C/C++实现人像抠图 (Portrait Matting)》;本篇主要分享将Python训练后的matting模型转写成C/C++代码。我们将开发一个简易的、可实时运行的人像抠图C/C++ Demo。C/C ++版本人像抠图模型推理支持CPU和GPU加速,在GPU(OpenCL)加速下,可以达到头发细致级别的人像抠图效果,为了方便后续模型工程化和Android平台部署,项目提供高精度版本人像抠图和轻量化快速版人像抠图,并提供Python/C++/Android多个版本;

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/134790532

Android Demo APP下载地址:https://download.csdn.net/download/guyuealian/63228759

先展示一下一键人像抠图效果:


更多项目《一键抠图》系列文章请参考:

  • 一键抠图1:Python实现人像抠图 (Portrait Matting)https://blog.csdn.net/guyuealian/article/details/134784803
  • 一键抠图2:C/C++实现人像抠图 (Portrait Matting)https://blog.csdn.net/guyuealian/article/details/134790532
  • 一键抠图3:Android实现人像抠图 (Portrait Matting)https://blog.csdn.net/guyuealian/article/details/121680939


2. 抠图算法

基于深度学习的Matting分为两大类:

  • 一种是基于辅助信息输入。即除了原图和标注图像外,还需要输入其他的信息辅助预测。最常见的辅助信息是Trimap,即将图片划分为前景,背景及过度区域三部分。另外也有以背景或交互点作为辅助信息。

  • 一种是不依赖任何辅助信息,直接对Alpha进行预测。如本博客复现的MODNet

第一种方法,需要加入辅助信息,而辅助信息一般较难获取,这也限制其应用,为了提升Matting的应用性,针对Portrait Matting领域MODNet摒弃了辅助信息,直接实现Alpha预测,实现了实时Matting,极大提升了基于深度学习Matting的应用价值。

更多抠图算法(Matting),请参考我的一篇博客《图像抠图Image Matting算法调研》:

图像抠图Image Matting算法调研_image matting调研-CSDN博客文章浏览阅读4.3k次,点赞8次,收藏68次。1.Trimap和StrokesTrimap和Strokes都是一种静态图像抠图算法,现有静态图像抠图算法均需对给定图像添加手工标记以增加抠图问题的额外约束。Trimap,三元图,是对给定图像的一种粗略划分,即将给定图像划分为前景、背景和待求未知区域Strokes则采用涂鸦的方式在图像上随意标记前景和背景区域,剩余未标记部分则为待求的未知区域Trimap是最常用的先验知识,多数抠图算法采用了Trimap作为先验知识,顾名思义Trimap是一个三元图,每个像素取值为{0,128,..._image matting调研https://blog.csdn.net/guyuealian/article/details/119648686可能,有小伙伴搞不清楚分割(segmentation)和抠图(matting)有什么区别,我这里简单说明一下:

  •  分割(segmentation):从深度学习的角度来说,分割本质是像素级别的分类任务,其损失函数最简单的莫过于是交叉熵CrossEntropyLoss(当然也可以是Focal Loss,IOU Loss,Dice Loss等);对于前景和背景分割任务,输出Mask的每个像素要么是0,要么是1。如果拿去直接做图像融合,就很不自然,Mask边界很生硬,这时就需要使用抠图算法了
  •  抠图(matting): 而抠图本质是一种回归任务,其损失函数可以是MSE Loss,L1 Loss,L2 Loss等,对于前景和背景抠图任务,输出Mask的每个像素是0~1之间的连续值,可看作是对图像透明通道(Alpha)的回归预测。可以用公式表示为C = αF + (1-α)B ,其中α(不透明度)、F(前景色)和B(背景色),alpha是[0, 1]之间的连续值,可以理解为像素属于前景的概率。在人像分割任务中,alpha只能取0或1,而抠图任务中,alpha可取[0, 1]之间的连续值,
  • 本质上就是一句话:分割是分类任务,而抠图是回归任务。

3. 人像抠图算法MODNet

本文主要在MODNet人像抠图算法基础上进行模型压缩和优化,关于《MODNet: Trimap-Free Portrait Matting in Real Time》,请参考:

  • Paper: https://arxiv.org/pdf/2011.11961.pdf
  • 官方Github: GitHub - ZHKKKe/MODNet: A Trimap-Free Solution for Portrait Matting in Real Time 

 MODNet模型学习分为三个部分,分别为:语义部分(S),细节部分(D)和融合部分(F)

  • 在语义估计中,对high-level的特征结果进行监督学习,标签使用的是下采样及高斯模糊后的GT,损失函数用的L2-Loss,用L2loss应该可以学到更soft的语义特征;
  • 在细节预测中,结合了输入图像的信息和语义部分的输出特征,通过encoder-decoder对人像边缘进行单独地约束学习,用的是交叉熵损失函数。为了减小计算量,encoder-decoder结构较为shallow,同时处理的是原图下采样后的尺度。
  • 在融合部分,把语义输出和细节输出结果拼起来后得到最终的alpha结果,这部分约束用的是L1损失函数。

(1)模型训练

官方GitHub仅仅放出推理代码,并未提供训练代码和数据处理代码 ;鄙人参考原论文花了几个星期的时间,总算复现了其基本效果,并做了一些轻量化和优化的工作,主要有:

  • 复现Pytorch版本的MODNet训练过程和数据处理
  • 增加了数据增强方法:如多尺度随机裁剪,Mosaic(拼图),随机背景融合等方法,提高模型泛化性
  • 对MODNet骨干网络backbone进行轻量化,减少计算量
  • 模型压缩,目前提供三个版本:高精度人像抠图modnet+快速人像抠图modnet0.75+超快人像抠图modnet0.5
  • 转写模型推理过程,实现C++版本人像抠图算法
  • 实现Android版本人像抠图算法,支持CPU和GPU
  • 提供高精度版本人像抠图,可以达到精细到发丝级别的抠图效果(Android GPU 150ms,  CPU 500ms左右)
  • 提供轻量化快速版人像抠图,满足基本的人像抠图效果,可以在Android达到实时的抠图效果(Android GPU 60ms,  CPU 140ms左右)

高精度人像抠图modnet+快速人像抠图modnet0.75+超快人像抠图modnet0.5的模型参数量和计算量:

模型input sizeFLOPs and Params
modnet416×416Model FLOPs 10210.24M, Params 6.44M
modnet0.75320×320Model FLOPs 3486.23M, Params 3.64M
modnet0.5320×320Model FLOPs 1559.07M, Params 1.63M

(2)将Pytorch模型转换ONNX模型

训练好模型后,你需要先将Pytorch模型转换为ONNX模型,并使用onnx-simplifier简化网络结构,Python版本的已经提供了ONNX转换脚本,终端输入命令如下:

# 导出ONNX模型
python export.py --model_type "modnet" --model_file "work_space/modnet_416/model/best_model.pth"

GitHub: https://github.com/daquexian/onnx-simplifier
Install:  pip3 install onnx-simplifier 

(3)将ONNX模型转换为TNN模型

目前在C++端上,CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

转换成功后,会生成两个文件(*.tnnproto和*.tnnmodel) ,下载下来后面会用到


4. 模型C++部署

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置好开发环境。

(1)项目结构

(2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置和编译

  • 安装OpenCV:图像处理

图像处理(如读取图片,图像裁剪等)都需要使用OpenCV库进行处理

安装教程:Ubuntu18.04安装opencv和opencv_contrib

OpenCV库使用opencv-4.3.0版本,opencv_contrib库暂时未使用,可不安装

  • 安装OpenCL:模型加速

 安装教程:Ubuntu16.04 安装OpenCV&OpenCL

OpenCL用于模型GPU加速,若不使用OpenCL进行模型推理加速,纯C++推理模型,速度会特别特别慢

  • base-utils:C++库

GitHub:https://github.com/PanJinquan/base-utils (无需安装,项目已经配置了)

base_utils是个人开发常用的C++库,集成了C/C++ OpenCV等常用的算法

  • TNN:模型推理

GitHub:https://github.com/Tencent/TNN (无需安装,项目已经配置了)

由腾讯优图实验室开源的高性能、轻量级神经网络推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时借鉴了业界主流开源框架高性能和良好拓展性的特性,拓展了对于后台X86, NV GPU的支持。手机端 TNN已经在手机QQ、微视、P图等众多应用中落地,服务端TNN作为腾讯云AI基础加速框架已为众多业务落地提供加速支持。

(3)部署TNN模型

项目模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通电脑设备即可达到实时处理。

如果你想在这个 C++ Demo部署你自己训练的模型,你可以将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把原始的模型替换成你自己的TNN模型即可。

(4)CMake配置

这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库,Windows系统下请自行配置和编译

cmake_minimum_required(VERSION 3.5)
project(Detector)add_compile_options(-fPIC) # fix Bug: can not be used when making a shared object
set(CMAKE_CXX_FLAGS "-Wall -std=c++11 -pthread")
#set(CMAKE_CXX_FLAGS_RELEASE "-O2 -DNDEBUG")
#set(CMAKE_CXX_FLAGS_DEBUG "-g")if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)# -DCMAKE_BUILD_TYPE=Debug# -DCMAKE_BUILD_TYPE=Releasemessage(STATUS "No build type selected, default to Release")set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Build type (default Debug)" FORCE)
endif ()# opencv set
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS} ./src/)
#MESSAGE(STATUS "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")# base_utils
set(BASE_ROOT 3rdparty/base-utils) # 设置base-utils所在的根目录
add_subdirectory(${BASE_ROOT}/base_utils/ base_build) # 添加子目录到build中
include_directories(${BASE_ROOT}/base_utils/include)
include_directories(${BASE_ROOT}/base_utils/src)
MESSAGE(STATUS "BASE_ROOT = ${BASE_ROOT}")# TNN set
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds it for you.
# Gradle automatically packages shared libraries with your APK.
# build for platform
# set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
if (CMAKE_SYSTEM_NAME MATCHES "Android")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_ARM_ENABLE ON CACHE BOOL "" FORCE)set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread#set(TNN_HUAWEI_NPU_ENABLE OFF CACHE BOOL "" FORCE)add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DTNN_ARM_ENABLE)              # for Android CPUadd_definitions(-DDEBUG_ANDROID_ON)            # for Android Logadd_definitions(-DPLATFORM_ANDROID)
elseif (CMAKE_SYSTEM_NAME MATCHES "Linux")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)set(TNN_X86_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Threadadd_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DDEBUG_ON)                    # for WIN/Linux Logadd_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Logadd_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV showadd_definitions(-DPLATFORM_LINUX)
elseif (CMAKE_SYSTEM_NAME MATCHES "Windows")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)set(TNN_X86_ENABLE ON CACHE BOOL "" FORCE)set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Threadadd_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DDEBUG_ON)                    # for WIN/Linux Logadd_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Logadd_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV showadd_definitions(-DPLATFORM_WINDOWS)
endif ()
set(TNN_ROOT 3rdparty/TNN)
include_directories(${TNN_ROOT}/include)
include_directories(${TNN_ROOT}/third_party/opencl/include)
add_subdirectory(${TNN_ROOT}) # 添加外部项目文件夹
set(TNN -Wl,--whole-archive TNN -Wl,--no-whole-archive)# set TNN library
MESSAGE(STATUS "TNN_ROOT = ${TNN_ROOT}")# Detector
include_directories(src)
set(SRC_LISTsrc/segment.cppsrc/Interpreter.cpp)
add_library(dlcv SHARED ${SRC_LIST})
target_link_libraries(dlcv ${OpenCV_LIBS} base_utils)
MESSAGE(STATUS "DIR_SRCS = ${SRC_LIST}")add_executable(Detector src/main_for_segment.cpp)
target_link_libraries(Detector dlcv ${TNN} -lpthread)

(5)main源码

主程序src/main_for_segment.cpp中提供行手势识别的Demo,支持图片,视频和摄像头测试

//
// Created by Pan on 2020/6/24.
//#include "segment.h"
#include <iostream>
#include <string>
#include <vector>
#include <image_utils.h>
#include "file_utils.h"
#include "debug.h"using namespace dl;
using namespace vision;
using namespace std;const int num_thread = 1;
DeviceType device = GPU; // 使用GPU运行,需要配置好OpenCL
// DeviceType device = CPU; // 使用CPU运行
// 高精度人像抠图
const char *model_file = (char *) "../data/tnn/segment/matting1.00_416_416_sim.opt.tnnmodel";
const char *proto_file = (char *) "../data/tnn/segment/matting1.00_416_416_sim.opt.tnnproto";
SegmentParam model_param = MATTING416;//超快人像抠图
//const char *model_file = (char *) "../data/tnn/segment/matting0.50_320_320_sim.opt.tnnmodel";
//const char *proto_file = (char *) "../data/tnn/segment/matting0.50_320_320_sim.opt.tnnproto";
//SegmentParam model_param = MATTING320;Segment *detector = new Segment(model_file,proto_file,model_param,num_thread,device);
// 背景图像
string bg_file = "../data/bg2.png";
cv::Mat bg_image = cv::imread(bg_file);void test_image_file() {string image_dir = "../data/test_images";std::vector<string> image_list = get_files_list(image_dir);for (string image_path:image_list) {cv::Mat bgr_image = cv::imread(image_path);if (bgr_image.empty()) continue;printf("%s\n", image_path.c_str());// 开始抠图,返回matte图(即前景和背景的分割图)cv::Mat matte;detector->detect(bgr_image, matte);// 融合图像cv::Mat fusion;image_fusion(bgr_image, matte, fusion, bg_image);//image_fusion(bgr_image, matte, fusion);// 可视化代码detector->visualizeResult(bgr_image, matte, fusion, 0);}printf("FINISHED.\n");
}/**** 测试视频文件* @return*/
int test_video_file() {string video_file = "../data/video/video-test1.mp4"; //视频文件cv::VideoCapture cap;bool ret = get_video_capture(video_file, cap);cv::Mat frame;while (ret) {cap >> frame;if (frame.empty()) break;// 开始抠图,返回matte图(即前景和背景的分割图)cv::Mat matte;detector->detect(frame, matte);// 融合图像cv::Mat fusion;image_fusion(frame, matte, fusion, bg_image);//image_fusion(bgr_image, matte, fusion);// 可视化代码detector->visualizeResult(frame, matte, fusion, 10);}cap.release();printf("FINISHED.\n");return 0;
}/**** 测试摄像头* @return*/
int test_camera() {int camera = 0; //摄像头ID号(请修改成自己摄像头ID号)cv::VideoCapture cap;bool ret = get_video_capture(camera, cap);cv::Mat frame;while (ret) {cap >> frame;if (frame.empty()) break;// 开始抠图,返回matte图(即前景和背景的分割图)cv::Mat matte;detector->detect(frame, matte);// 融合图像cv::Mat fusion;image_fusion(frame, matte, fusion, bg_image);//image_fusion(bgr_image, matte, fusion);// 可视化代码detector->visualizeResult(frame, matte, fusion,10);}cap.release();printf("FINISHED.\n");return 0;
}int main() {//test_image_file();test_video_file();//test_camera();return 0;
}

(6)源码编译和运行

编译脚本,或者直接:bash build.sh

#!/usr/bin/env bash
if [ ! -d "build/" ];thenmkdir "build"
elseecho "exist build"
fi
cd build
cmake ..
make -j4
sleep 1
./Detector
  • 如果你要测试CPU运行的性能,请修改src/main_for_segment.cpp

DeviceType device = CPU;

  • 如果你要测试GPU运行的性能,请修改src/main_for_segment.cpp (需配置好OpenCL) 

DeviceType device = GPU; //默认使用GPU

纯C++推理模式需要耗时几秒的时间,而开启OpenCL加速后,GPU模式耗时仅需十几毫秒,性能极大的提高。


5. 人像抠图效果

C++版本人像抠图效果与Python版本的效果几乎一致:

实际使用中,建议你:

  • 背景越单一,抠图的效果越好,背景越复杂,抠图效果越差;建议你实际使用中,找一比较单一的背景,如墙面,天空等
  • 上半身抠图的效果越好,下半身或者全身抠图效果较差;本质上这是数据的问题,因为训练数据70%都是只有上半身的
  • 白种人抠图的效果越好,黑人和黄种人抠图效果较差;这也是数据的问题,因为训练数据大部分都是隔壁的老外

下图是高精度版本人像抠图和快速人像抠图的测试效果,相对而言,高精度版本人像抠图可以精细到发丝级别的抠图效果;而快速人像构图目前仅能实现基本的抠图效果

高精度版本人像抠图快速人像抠图

6. 项目源码下载

源码下载:

内容包含:

  1. 提供高精度版本人像抠图模型(modnet_416),可以达到精细到发丝级别的抠图效果
  2. 提供轻量化快速版人像抠图模型(modnet0.75_320和modnet0.5_320),满足基本的人像抠图效果
  3. ​C/C++项目源码支持图片,视频,摄像头测试

  4. 项目配置好了base-utils和TNN,而OpenCV和OpenCL需要自行编译安装,开发工具推荐使用CLion


7. 人像抠图Python版本

一键抠图1:Python实现人像抠图 (Portrait Matting)https://blog.csdn.net/guyuealian/article/details/134784803

8. 人像抠图Android版本

 Android Demo APP下载地址:https://download.csdn.net/download/guyuealian/63228759

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/199422.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

作业12.5

1.定义一个基类 Animal&#xff0c;其中有一个虛函数perform&#xff08;)&#xff0c;用于在子类中实现不同的表演行为。 #include <iostream>using namespace std; class Animal { private:int weight; public:Animal(){}Animal(int weight):weight(weight){}virtual …

全网最新最牛的Appium自动化:Appium常用操作之TouchAction操作

TouchAction操作 Appium的辅助类&#xff0c;主要针对手势操作&#xff0c;比如滑动、长按、拖动等。其原理是将一系列的动作放在一个链条中&#xff0c;然后将该链条传递给服务器。服务器接受到该链条后&#xff0c;解析各个动作&#xff0c;逐个执行。 TouchAction类支持的动…

如何销售汽车之 汽车销售技巧和话术

如何销售汽车之 汽车销售技巧和话术 当前&#xff0c;汽车销售市场的竞争日益激烈&#xff0c;消费者对汽车的需求和要求也越来越高。但是市场竞争车型也非常多&#xff0c;如何更好的做好销售业绩突破&#xff0c;提高汽车销量&#xff0c;创造汽车销售佳绩&#xff0c;就需要…

什么是网络爬虫?有什么用?怎么爬?

嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 【导读】 网络爬虫也叫做网络机器人&#xff0c;可以代替人们自动地在互联网中进行数据信息的采集与整理。 在大数据时代&#xff0c;信息的采集是一项重要的工作&#xff0c;如果单纯靠人力进行信息采集&#xff0c;不仅低…

k8s 安装部署

一&#xff0c;准备3台机器&#xff0c;安装docker&#xff0c;kubelet、kubeadm、kubectl firewall-cmd --state 使用下面命令改hostname的值&#xff1a;(改为k8s-master01)另外两台改为相应的名字。 172.188.32.43 hostnamectl set-hostname k8s-master01 172.188.32.4…

Matlab 生成license

参考下面两个帖子 https://ww2.mathworks.cn/matlabcentral/answers/389888-matlab https://www.mathworks.com/matlabcentral/answers/131749-id-id-id-id 登陆 https://ww2.mathworks.cn/licensecenter 针对R2020b版本,点击下面红框生成 ip addr | grep ether看第一行 根据…

Geodesic in Heat: 一种测地线计算方法

在之前的博客中&#xff0c;我已经介绍过了使用Fast Marching算法计算测地线。Fast Marching的好处是实现简单&#xff0c;方便扩展在点云上。但是缺点是精度不够&#xff0c;求解不平滑。早在2013年&#xff0c;Crane et al. [1]就已经提出利用热流来估算测地距离。我很早就知…

Hadoop学习笔记(HDP)-Part.14 安装YARN+MR

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

一文7个步骤教你搭建测试web测试项目实战环境,

​今天小编&#xff0c;给大家总结下web 测试实战的相关内容&#xff0c;一起来学习下吧&#xff01; web项目实战可按顺序依次为&#xff1a;【搭建测试环境】、【需求评审】、【编写测试计划】、【分析测试点.编写测试用例】、【用例评审】、【执行用例提bug】、【测试报告】…

编写并调试运行一个简单的 Java 应用程序,显示自己的学号、姓名、兴趣爱好等。

源代码&#xff1a; public class Main { public static void main(String[] args) { System.out.println("学号是:""0233217821"); System.out.println("姓名是:""赵港"); System.out.println("兴趣爱好是:""运动&qu…

想要精确搜索商品详情?闲鱼电商API接口帮你实现!

闲鱼电商API接口是一种为开发者提供的强大工具&#xff0c;它能够帮助开发者轻松获取闲鱼平台上的商品信息&#xff0c;实现精确搜索商品详情功能。无论你是想要开发一个自有电商平台&#xff0c;还是需要定制商品搜索功能&#xff0c;闲鱼电商API接口都能够满足你的需求。 API…

C++检测字符串中有效的括号个数

匹配一个字符串buf中&#xff0c;连续包换运算符reg的次数&#xff1a; #include <iostream>//return 返回匹配的字符个数 //buf, 要检测的字符串 //reg, 包含的连续运算符 int GetMatchCount(std::string& buf, std::string& reg) {int nMatchCount 0;if (reg.…

提高Idea编码速度和插件自用推荐

非常推荐 Easy Javadoc 一款注释生成器&#xff0c;很好使~免费&#xff0c;配合使用腾讯、百度之类的翻译免费额度完全够用了&#xff0c;印象中是50万字符每月。下图是使用快捷键生成的注释&#xff08;我采用鼠标侧面按键&#xff0c;随手一按很方便&#xff09; Chinese …

制作一个RISC-V的操作系统四-嵌入式开发介绍

文章目录 什么是嵌入式开发交叉编译查看一些GCC文件夹 调试器GDB相关语法命令 模拟器QEMUQEMU的安装和使用项目构造工具MakeMakeFile的构成make的运行 练习4-1联系4-2练习4-3 什么是嵌入式开发 程序跑到开发板上&#xff0c;或者说运行到硬件上 交叉编译 简单理解交叉编译来说…

Mybaits 动态sql 整理

一 常见的 MyBatis 是一个流行的 Java 数据持久化框架&#xff0c;它提供了灵活的动态 SQL 查询功能&#xff0c;让开发者可以根据需要构建动态的 SQL 查询语句。下面是 MyBatis 中常用的动态 SQL 构建方式&#xff1a; 1. if 元素&#xff1a;用于根据条件判断是否包含某个 …

Web自动化测试怎么做?Web网页测试全流程解析

1、功能测试 web网页测试中的功能测试&#xff0c;主要测试网页中的所有链接、数据库连接、用于在网页中提交或获取用户信息的表单、Cookie 测试等。 &#xff08;1&#xff09;查看所有链接&#xff1a; 测试从所有页面到被测特定域的传出链接。 测试所有内部链接。 测…

设计模式之创建型模式(单例、工厂方法、抽象工厂、原型、建造者)

文章目录 一、设计模式二、设计模式的六大原则三、设计模式分类四、单例设计模式五、工厂方法六、抽象工厂七、原型模式八、建造者模式 一、设计模式 设计模式&#xff08;Design pattern&#xff09;代表了最佳的实践&#xff0c;通常被有经验的面向对象的软件开发人员所采用…

JSP 设置静态文件资源访问路径

这里 我们先在 WEB目录webapp 下创建一个包 叫 static 就用它来存静态资源 然后 我们扔一张图片进去 我们直接这样写 如下图 找到父级目录 然后寻找下面的 static 下的 img.png 运行代码 很明显 它没有找到 这边 我们直接找到 webapp目录下的 WEB-INF目录下的 web.xml 加入…

temu最近数据:拼多多旗下跨境电商平台的业绩持续增长

据最近的报道和数据显示&#xff0c;拼多多旗下的跨境电商平台Temu在2023年第三季度取得了显著的业绩增长。销售额突破50亿美元&#xff0c;市场份额不断扩大&#xff0c;用户数量迅速增长。本文将深入探讨Temu的业绩增长、市场份额、用户增长以及其营销策略。 先给大家推荐一款…

3d家居产品虚拟三维展示提升企业的品牌竞争力

2D展示逐渐难以满足消费者需求&#xff0c;因此基于3D三维展示制作平台将产品或服务以三维形式呈现的3D三维展示更受客户和企业青睐&#xff0c;也大幅提升企业的营销推广效果。那么3D三维展示制作平台如何赋能企业营销推广呢? 首先&#xff0c;3D三维展示制作平台能够提供更加…