RISC-V 指令集介绍

1. 背景介绍

        指令集从本质上可以分为复杂指令集(Complex Instruction Set Computer,CISC)和精简指令集(Reduced Instruction Set Computer,RISC)两种。复杂指令集的特点是能够在一条指令内完成很多事情。

        指令架构(Instruction Set Architecture, 缩写为ISA),是软件和硬件的接口,不同的应用需求,会有不同的指令架构。

        RISC-V的不同寻常之处在于:和几乎所有以往的ISA不同,它是模块化的。它的核心是一个名为RV32I的基础ISA,运行一个完整的软件栈。RV32I是固定的,永远不会改变。这为编译器编写者,操作系统开发人员和汇 编语言程序员提供了稳定的目标。模块化来源于可选的标准扩展,根据应用程序的需要, 硬件可以包含或不包含这些扩展。这种模块化特性使得RISC-V具有了袖珍化、低能耗的特点。

2. RISC-V指令格式

常见的RISC-V指令集如下表所示:

基本指令集含义
RV32I32位整数指令集
RV32E

RV32I的子集,用于小型嵌入式场景

RV64I64位整数指令集,兼容RV32I
RV128I128位整数指令集,兼容RV64I和RV32I

RISC-V有六种基本指令格式

  • R-type:用于寄存器-寄存器操作
  • I-type:用于短立即数和访存 load 操作
  • S-type:用于访存 store 操作
  • B-type:用于条件跳转操作
  • U-type:用于长立即数
  • J-type:用于无条件跳转

        指令只有6种格式,并且所有指令都是32位长,指令的低7位固定为opcode,简化了指令解码。在RISC-V中对于所有指令,要读写的寄存器的标识符总是在同一位置,意味着在解码指令之前,就可以先开始访问寄存器,这些格式的立即数字段总是符号扩展,符号位总是在指令中最高位,各种类型的指令构成如下图所示:

字段含义:

  • opcode(操作码):指令的基本操作,这个缩写是它惯用名称。
  • rd:目的操作寄存器,用来存放操作结果。
  • funct3:一个另外的操作码字段。
  • rs1:第一个源操作数寄存器。
  • rs2:第二个源操作数寄存器。
  • funct7:一个另外的操作码字段。
  • imm:立即数


2.1. R型指令

32bit R型指令包括6个部分:

  • opcode是操作码,位宽7bit,在指令的0-6bit;
  • rd (Destination Register)是目的寄存器,位宽5bit,在指令的7-11bit;
  • funct3+funct7是两个操作字段。funct3占了3bit,funct7占了7bit;
  • rs1 (Source Register 1)是第一个源操作数寄存器,位宽5bit,在指令的15-19bit;
  • rs2 (Source Register 2)是第二个源操作数寄存器,位宽5bit,在指令的25-31bit。

R型指令构成如下:

R型的全部指令(RV32I)

R型指令包括加法、减法、逻辑运算、移位运算。

示例:
add a0, a1, a2  //a0 = a1 + a2
sub a0, a1, a2  //a0 = a1 - a2
sll a0, a1, a2  //a0 = a1 << a2(低位补0)
srl a0, a1, a2  //a0 = a1 >> a2(高位补0)
sra a0, a1, a2  //a0 = a1 >> a2 (算术右移,高位补原来的符号位)
slt a0, a1, a2  //a1 < a2 ? a0 = 1 : a0 = 0
xor a0, a1, a2  //a0 = a1 ^ a2
or  a0, a1, a2  //a0 = a1 | a2
and a0, a1, a2  //a0 = a1 & a2

2.2. I型指令

I型指令包括5个部分:

  • opcode是操作码,位宽7bit,在指令的0-6bit;
  • rd (Destination Register)是目的寄存器,位宽5bit,在指令的7-11bit;
  • funct3是操作字段。funct3占了3bit,在指令的12-14bit;
  • rs1 (Source Register 1)是第一个源操作数寄存器,占了5bit,在指令的15-19bit;
  • 存放12位的立即数——imm[11:0],在指令的20-31bit。

I型指令构成如下:

I型的全部指令(RV32I)

I型指令包括立即数的运算和load指令。 

示例:
addi a0, a1, 0x5  //a0 = a1 + 0x5
subi a0, a1, 0x05  //a0 = a1 - 0x05
slli a0, a1, 0x05  //a0 = a1 << 0x05(低位补0)
srli a0, a1, 0x05  //a0 = a1 >> 0x05(高位补0)
srai a0, a1, 0x05  //a0 = a1 >> 0x05 (算术右移,高位补原来的符号位)
slti a0, a1, 0x05  //a1 < 0x05 ? a0 = 1 : a0 = 0
xori a0, a1, 0x05  //a0 = a1 ^ 0x05
ori a0, a1, 0x05   //a0 = a1 | 0x05
andi a0, a1, 0x05  //a0 = a1 & 0x05

示例:
lb x10,  0(x1)  //将x1的值加上0,将这个值作为地址, 取出这个地址所对应的内存中的值, 将这个值赋值给x10(取出的是8位数值)
lh x10,  0(x1)  //从内存中取出16位数值
lw x10, 0(x1)  //从内存中取出32位数值
lbu x10, 0(x1) //从内存中取出8位无符号数值
lhu x10, 0(x1) //从内存中取出16位无符号数值

2.3. S型指令

S型指令包括6个部分:

  • opcode是操作码,位宽7bit,在指令的0-6bit;
  • imm[4:0]+imm[11:5];
  • funct3是操作字段。funct3占了3bit,在指令的12-14bit;
  • rs1 (Source Register 1)是第一个源操作数寄存器,占了5bit,在指令的15-19bit;
  • rs2 (Source Register 2)是第二个源操作数寄存器,占了5bit,在指令的25-31bit。

S型指令构成如下:

S型的全部指令(RV32I)

S型指令包括store指令。 

示例:
sb  x10, 0(x1)  //x1的值加上0,将这个值作为地址, 将x10的值存储到上述地址所对应的内存中去 (只会将x10的值的低8位写入)
sh  x10, 0(x1)  //只会将x10的值的低16位写入
sw  x10, 0(x1)  //只会将x10的值的低32位写入

2.4. B型指令

B型指令包括6个部分:

  • opcode是操作码,位宽7bit,在指令的0-6bit;
  • imm[4:1]+imm[11]+imm[10:5]+imm[12];(注:imm[0]被丢弃,因为它始终为零)
  • funct3是操作字段。funct3占了3bit,在指令的12-14bit;
  • rs1 (Source Register 1)是第一个源操作数寄存器,占了5bit,在指令的15-19bit;
  • rs2 (Source Register 2)是第二个源操作数寄存器,占了5bit,在指令的25-31bit。

B型指令构成如下:

B型的全部指令(RV32I)

B型指令包括条件跳转指令。 

示例:
beq a1,a2,Label   //if(a1==a2){goto Label;}
bne a1,a2,Label   //if(a1!=a2){goto Label;}
blt a1,a2,Label   //if(a1< a2){goto Label;}
bgt a1,a2,Label   //if(a1> a2){goto Label;}
bge a1,a2,Label   //if(a1<=a2){goto Label;}
ble a1,a2,Label   //if(a1>=a2){goto Label;}

2.5. U型指令

U型指令包括3个部分:

  • opcode是操作码,位宽7bit,在指令的0-6bit;
  • rd (Destination Register)是目的寄存器,占了5bit,在指令的7-11bit;
  • imm[31:12]:存放高20位的立即数——imm[31:12],在指令的12-31bit。

U型指令构成如下:

U型的全部指令(RV32I)

示例:
lui  x10, 0x65432 //得到立即数的高20位,低位补0,立即数范围为:0x00~0xFFFFF

2.6. J型指令

J型指令包括3个部分:

  • opcode是操作码,位宽7bit,在指令的0-6bit;
  • rd (Destination Register)是目的寄存器,占了5bit,在指令的7-11bit;
  • 立即数划分:imm[19:12]+imm[11]+imm[10:1]+imm[20]:

J型指令构成如下:

J型的全部指令(RV32I)

示例:
jal ra, symbol    // 跳转到Symbol中去, 并把ra设置成返回地址 Symbol 可以是自定义的Label ,也可以是某个函数名
jal ra, 100       // 跳转到pc + 100 * 2的地方中去, 并把ra设置成返回地址  pc相对寻址,对应的是位置无关代码(PIC)
jalr ra, 40(x10)  // 跳转到x10+40 的地方中去, 并把ra设置成返回地址x10+40必须是绝对地址,指向内存中某个确定的地方(往往是函数的开头),非PIC

3. 通用寄存器

RV32I有32个通用寄存器,以及一个PC寄存器。其中有一个通过硬件设置的值恒为 0 的 x0 寄存器

注:RISC-V的32个寄存器x0~x31是用0~31这些数字来表示。


参考文档、博客:

RISC-V官方文档

riscv指令集基础_konghhhhh的博客-CSDN博客

计算机系统基础(五)之RISC-V指令集_riscv指令集_深度学习的学习僧的博客-CSDN博客

RISC-V指令集_riscv指令集_点灯大师~的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/19870.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云安全攻防(四)之 云原生技术

云原生技术 容器技术 容器与虚拟化 虚拟化&#xff08;Virtualization&#xff09;和容器&#xff08;Container&#xff09;都是系统虚拟化的实现技术&#xff0c;可实现系统资源的”一虚多“共享。容器技术可以理解成一种”轻量的虚拟化“方式&#xff0c;此处的”轻量“主…

安全加固服务器

根据以下的内容来加固一台Linux服务器的安全。 首先是限制连续密码错误的登录次数&#xff0c;由于RHEL8之后都不再使用pam_tally.so和pam_tally2.so&#xff0c;而是pam_faillock.so 首先进入/usr/lib64/security/中查看有什么模块&#xff0c;确认有pam_faillock.so 因为只…

UG\NX 二次开发 相切面、相邻面的选择控件

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan 简介&#xff1a; 有群友问“UFUN多选功能过滤面不能选择相切面或相邻面之类的吗&#xff1f;” 这个用Block UI的"面收集器"就可以&#xff0c;ufun函数是不行的。 效果&am…

Debeizum 增量快照

在Debeizum1.6版本发布之后&#xff0c;成功推出了Incremental Snapshot&#xff08;增量快照&#xff09;的功能&#xff0c;同时取代了原有的实验性的Parallel Snapshot&#xff08;并行快照&#xff09;。在本篇博客中&#xff0c;我将介绍全新快照方式的原理&#xff0c;以…

HTML+CSS+JavaScript:实现B站评论发布效果

一、需求 1、用户输入内容&#xff0c;输入框左下角实时显示输入字数 2、为避免用户输入时在内容左右两端误按多余的空格&#xff0c;在发送评论时&#xff0c;检测用户输入的内容左右两端是否带有空格&#xff0c;若有空格&#xff0c;发布时自动取消左右两端的空格 3、若用…

浏览器的同源策略 - 跨域问题

1.什么是跨域 跨域问题的实质是浏览器的同源策略造成的。浏览器同源策略是浏览器为 JavaScript 施加的限制。简单点说就是非同源会出现如下等限制&#xff1a; 无法访问其他源下的网页的 Cookies&#xff0c;Storage等&#xff1b;无法访问其他源下的DOM对象和 JS 对象;无法使…

java环境搭建 Ubuntu Linux

jdk的安装和配置环境变量 使用apt sudo apt install default-jdk若是安装成功了在终端输入java -version来查看是否安装成功 使用官网下载的jdk包 直接在百度上搜索jdk&#xff0c;选择图片这个 网址:jdk下载网址 若是arm就选择带有arm的&#xff0c;反之选择x64的&#…

vscode 通过mongoose 连接mongodb atlas

了解mongodb 的项目结构 1.代表集群名称 > 2.代表数据库名称>3.代表每个 collection名称 三者范围为从大到小的关系 &#xff08;一对多&#xff09;。每个集群有不同的连接地址、用户信息&#xff08;Database Access&#xff09;、ip配置信息&#xff08;Network Acce…

51单片机(普中HC6800-EM3 V3.0)实验例程软件分析 实验一 点亮第一个LED

目录 前言 一、原理图及知识点介绍 1.1、LED原理图 1.2、MCU51原理图 二、代码分析 知识点一&#xff1a;#include "reg52.h" //此文件中定义了单片机的一些特殊功能寄存器 知识点二&#xff1a;你知道sfr P0 0x80;是怎么来的呢为什么要赋值0x80&#xff…

vxworks文件系统分析

参考https://www.freebuf.com/articles/endpoint/335030.html 测试固件 https://service.tp-link.com.cn/detail_download_7989.html 固件提取 binwalk解压固件&#xff0c;在第一部分即为要分析的二进制文件&#xff0c;可以拖进ida分析 设置为arm小端字节序&#xff0c;点…

数组中出现次数超过一半的数字——剑指 Offer 39

文章目录 题目描述法一 哈希表法二 摩尔投票 题目描述 法一 哈希表 使用哈希映射&#xff08;HashMap&#xff09;来存储每个元素以及出现的次数。对于哈希映射中的每个键值对&#xff0c;键表示一个元素&#xff0c;值表示该元素出现的次数。 class Solution { public:int maj…

程序的编译和调试

gcc编译器 gcc(GNU Compiler Collection)是GNU推出的多平台编译器&#xff0c;可将C、C源程序编译连接成可执行文件&#xff0c;支持以下后缀&#xff1a; .c c语言源代码 .h 程序所包含的头文件 .i 已经预处理过的C源代码文件 .s 汇编语言源代码文件 .o 编译后的目标文件…

解决SVN或GIT忽略提交文件的问题

背景 使用IDEA 的SVN插件提交文件是总是会提交一些不需要提交的文件; 我们可以通过一些简单设置忽略这些文件。 git 在项目根目录新建文本文件&#xff0c;修改后缀为.gitignore 文件中添加内容 *.iml .project .gradle/ .idea/ target/ build/ .vscode/ .settings/ .facto…

Elasticsearch:语义搜索 - Semantic Search in python

当 OpenAI 于 2022 年 11 月发布 ChatGPT 时&#xff0c;引发了人们对人工智能和机器学习的新一波兴趣。 尽管必要的技术创新已经出现了近十年&#xff0c;而且基本原理的历史甚至更早&#xff0c;但这种巨大的转变引发了各种发展的“寒武纪大爆炸”&#xff0c;特别是在大型语…

SAP数据库表维护视图生成器的使用

在SAP中&#xff0c;经常需要自定义数据库表。而且可能需要人工维护数据库表中的数据&#xff0c;可以通过SM30进行维护数据&#xff1b;但是SM30事务的权限太大&#xff0c;不适宜将SM30直接分配&#xff1b;因此&#xff0c;可以通过给维护表分配事务代码&#xff0c;来达到控…

无涯教程-Perl - 环境配置

在开始编写Perl程序之前&#xff0c;让我们了解如何设置我们的Perl环境。 您的系统更有可能安装了perl。只需尝试在$提示符下给出以下命令- $perl -v 如果您的计算机上安装了perl&#xff0c;那么您将收到以下消息: This is perl 5, version 16, subversion 2 (v5.16.2) b…

MySQL数据库——DQL操作——基本查询

文章目录 前言事前准备——测试数据整表查询指定列查找别名查询MySQL运算符条件查询模糊查询排序查询聚合查询分组查询分组之后的条件筛选 分页查询将整张表的数据插入到另一张表中 前言 MySQL数据库常见的操作是增删查改&#xff0c;而其中数据的查询是使用最多&#xff0c;也…

Modbus TCP转Profinet网关modbus tcp转以太网

大家好&#xff0c;今天我们来聊一聊如何使用捷米特的Profinet转modbusTCP协议转换网关在博图上进行非透传型配置。 1, 首先&#xff0c;我们需要安装捷米特JM-TCP-PN的GSD文件&#xff0c;并根据现场设备情况配置modbusTCP地址。然后&#xff0c;在博图中添加该GSD文件&#x…

了解垃圾回收算法

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ 垃圾回收&#xff08;Garbage Collect&#xff09;是Java语言中的一种自动内存管理机制&#xff0c;用于自动回收不再使用的对象所占用的内存空间。Java虚拟机会自动追踪和…

算法39:Excel 表列序号

一、需求 给你一个字符串 columnTitle &#xff0c;表示 Excel 表格中的列名称。返回 该列名称对应的列序号 。 例如&#xff1a; A -> 1 B -> 2 C -> 3 … Z -> 26 AA -> 27 AB -> 28 … 示例 1&#xff1a; 输入: columnTitle “A” 输出: 1 示例 2&…