2023 电赛 E 题 K210 方案

第一章:K210 介绍

K210芯片是一款基于RISC-V架构的嵌入式人工智能芯片,具备低功耗、高性能的特点。它拥有强大的图像处理和机器学习能力,适用于边缘计算设备和物联网应用。为了方便开发者,K210芯片提供了丰富的外设接口,包括摄像头接口、显示接口、WiFi、蓝牙等,同时支持多种编程语言和开发环境,如MicroPython和C语言。在计算机视觉领域,K210芯片被广泛应用于对象检测、人脸识别、图像分类等任务,能够实现快速的图像处理和分析。

K210 官网

第二章:矩形识别的基本原理

矩形识别是计算机视觉领域中常见的任务之一,它主要涉及图像处理和机器学习算法。

  1. 对于图像的预处理,可以根据具体需求选择合适的方法进行降噪、分辨率调整和对比度增强等操作。例如,可以使用滤波器进行降噪,使用插值算法进行分辨率调整,使用直方图均衡化进行对比度增强。

  2. 特征提取阶段需要根据具体的矩形特征进行选择合适的方法。边缘检测算法可以帮助找到图像中的边界信息,常用的算法包括Sobel算子和Canny边缘检测算法。直线检测可以使用Hough变换来识别直线,而角点检测算法可以使用Harris角点检测或Shi-Tomasi角点检测等方法。

  3. 矩形检测阶段可以使用霍夫变换或其他算法来检测图像中的矩形。霍夫变换可以通过累加直线参数来找到直线,进一步组合成矩形。也可以使用基于角点特征的方法,例如使用RANSAC算法来拟合矩形模型。还可以结合机器学习算法,如基于深度学习的目标检测方法,来实现矩形检测。

  4. 矩形定位可以通过计算矩形的边界框或角点坐标来实现。根据具体需求,可以选择不同的方式表示矩形的位置和大小,例如使用左上角和右下角坐标、中心点和宽高等。

  5. 矩形识别应用广泛,根据具体场景和需求,可以进行目标检测、边缘检测等任务。例如,在自动驾驶中,矩形识别可以帮助车辆识别道路的边界和交通标志;在工业领域,矩形识别可以用于产品的质量检测和生产线的自动控制。此外,矩形识别还可以应用于机器人视觉、安防监控等领域。

第三章:图像预处理与特征提取

在矩形识别任务中,图像预处理和特征提取是非常关键的步骤。

3.1 图像采集与传输

在进行图像预处理和特征提取之前,需要先将图像从 K210 开发板采集并传输到计算机上进行处理。可以通过连接相机模块或者摄像头到 K210 开发板来实现。

3.2 图像预处理

图像预处理旨在提高图像质量,减少后续处理过程中的噪声和干扰。以下是一些常见的图像预处理方法:

  • 降噪:使用滤波器(如高斯滤波器)对图像进行平滑处理,去除图像中的噪声。
  • 阈值处理:使用阈值对图像进行处理,选取需要的区域。
  • 对比度增强:通过直方图均衡等方法增强图像的对比度,使得图像中的信息更加明显。
  • 光照校正:对图像的亮度进行调整,使得图像中的目标更加清晰可见。

3.3 特征提取

特征提取是矩形识别中的关键步骤,它从图像中提取出与矩形相关的特征信息。以下是几种常用的特征提取方法:

  • 边缘检测:边缘是图像中物体之间的界限,通过使用边缘检测算法(如Canny算法、Sobel算法等),可以找到图像中的边缘信息。
  • 直线检测:直线是矩形的基本组成部分,通过使用直线检测算法(如霍夫变换),可以找到图像中的直线段。
  • 角点检测:角点是矩形的关键特征点,通过使用角点检测算法(如Harris角点检测、FAST角点检测等),可以找到图像中的角点位置。

这些提取到的特征可以作为后续矩形检测和定位的输入,帮助我们准确定位和识别图像中的矩形目标。

第四章:矩形检测与定位

在矩形识别任务中,矩形检测与定位是核心步骤之一。

4.1 矩形检测算法

矩形检测算法旨在从图像中找到可能的矩形目标。以下是几种常用的矩形检测算法:

  • 霍夫变换:霍夫变换是一种常用的图像处理技术,可以用于检测直线和其他形状。在矩形检测中,可通过霍夫变换检测图像中的直线,并根据直线之间的关系推断出可能的矩形。
  • 边缘连接:边缘连接是一种基于边缘信息的矩形检测方法。它通过将相邻的边缘线段进行连接,形成更大的轮廓,然后根据轮廓的形状和特征进行矩形的筛选。
  • 模板匹配:模板匹配是一种基于图像相似度的矩形检测方法。它先使用一个预定义的矩形模板,在图像中进行滑动窗口式的匹配,找出与模板最相似的位置,从而检测出可能的矩形。

4.2 矩形定位

矩形定位是在检测到可能的矩形后,精确定位和判断矩形的位置和大小,以下是几种常用的矩形定位方法:

  • 最小外接矩形:通过计算轮廓的最小外接矩形来定位矩形。最小外接矩形是能够完全包围住轮廓,并且具有最小面积的矩形。
  • 长宽比筛选:根据矩形的长宽比进行筛选,排除不符合要求的矩形。例如,可以设定一个阈值,只保留长宽比接近于1的矩形。
  • 角度筛选:检测矩形四条边的角度,排除角度不在一定范围内的矩形。例如,可以设定一个阈值,只保留角度接近于90度的矩形。

这些矩形检测和定位的方法可以根据实际需求进行选择和组合,以得到更准确的矩形识别结果。

4.3 K210深度算法

  1. MobileNet-SSD:MobileNet-SSD是基于MobileNet和SSD(Single Shot MultiBox Detector)的目标检测算法。它在保持较高精度的同时,具有较低的计算复杂度,非常适合在K210芯片上进行实时的矩形检测与定位。

  2. Tiny YOLO:Tiny YOLO是一种轻量级的目标检测算法,它是对YOLO算法的优化版本。通过减少网络结构和运算量,Tiny YOLO在保持较高检测精度的同时,能够在K210芯片上实现实时的矩形检测。

  3. EfficientDet:EfficientDet是一种高效的目标检测算法,它结合了EfficientNet和BiFPN(Bi-directional Feature Pyramid Network)。该算法通过设计高效的网络结构和特征金字塔网络,能够在K210上实现准确且高效的矩形检测与定位。

  4. CornerNet:CornerNet是一种基于角点的目标检测算法,它通过检测矩形的角点来实现矩形的定位和姿态估计。该算法具有较高的准确性和鲁棒性,在K210芯片上进行角点检测和矩形定位非常有效。

第五章:K210 实现矩形识别并返回坐标

5.1 K210 开发板配置

按照以下步骤进行操作:

  1. 获取 K210 开发板:购买或准备一块 K210 开发板,如 Sipeed Maixduino 等。

  2. 安装开发环境:在电脑上安装 K210 的开发环境,主要包括 K210 的工具链和 SDK。

  3. 连接开发板:将 K210 开发板通过 USB 线缆与电脑连接,并确保驱动程序正确安装。

  4. 编程与烧录:使用开发环境编写矩形识别的代码,将代码烧录到 K210 开发板中。

  5. 配置摄像头:如果需要从摄像头获取图像进行矩形识别,还需要配置和连接摄像头。

5.2 代码编写

在 K210 开发板上进行矩形识别的代码编写,可以使用 K210 提供的 SDK(Software Development Kit)。以下是一般的代码编写步骤:

  1. 引入必要的库和头文件:根据需要引入与矩形识别相关的库和头文件,如摄像头库、神经网络库等。

  2. 初始化开发板和摄像头:通过相应的函数调用初始化 K210 开发板和连接的摄像头。

  3. 图像采集和处理:使用摄像头获取图像数据,并进行预处理,如缩放、裁剪和色彩空间转换等操作。这些操作可根据具体的矩形识别算法来确定。

  4. 矩形识别与定位:使用选定的矩形识别算法进行图像的矩形检测和定位。根据具体的算法,可以获取矩形的位置、大小和角度等信息。

  5. 坐标返回:将识别到的矩形的坐标信息返回给主程序或其他设备,以便进行后续处理或显示。

  6. 清理资源:在完成矩形识别任务后,释放所使用的资源,如摄像头、内存等。

5.3 坐标应用

在实际应用中,可以使用矩形识别得到的坐标信息进行各种操作和应用,如图像分析、目标跟踪、自动驾驶等。以下是一些常见的应用场景:

  1. 目标跟踪:通过识别和返回的矩形坐标,可以实现对目标物体的跟踪和定位。例如,在视频监控系统中,可以通过矩形识别得到的坐标信息,实现对目标物体的自动追踪。

  2. 姿态估计:通过识别和返回的矩形坐标和角度信息,可以进行物体的姿态估计。例如,在机器人导航系统中,可以使用矩形识别结果来判断物体的朝向和姿态,从而实现更准确的导航和操作。

  3. 物体测量:通过识别和返回的矩形坐标和大小信息,可以进行物体的尺寸测量。例如,在生产线上,可以使用矩形识别结果来测量产品的长度、宽度等参数,以保证产品质量和一致性。

第六章:总结

本文系统地介绍了基于K210开发板的矩形识别技术的实现过程,并探讨了其在实际应用中的重要性和前景。通过对K210开发板的配置和编写相应的代码,可以在K210上实现准确和实时的矩形识别。未来,基于K210的矩形识别技术有望进一步优化算法、扩展功能,并在更多领域中得到应用。

下一章内容:使用K210进行实地测试,得到矩形的坐标

硬性的标准其实限制不了无限可能的我们,所以啊!少年们加油吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/19810.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux or mac 查看进程的pid和占有的端口

1.查看谁占有了什么端口&#xff1f; lsof -i:<占用端口> [rootgit-lab gitlab]# lsof -i:8929 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME docker-pr 25090 root 4u IPv4 140059875 0t0 TCP *:8929 (LISTEN) docker-pr 25096 root …

nginx和openssl版本升级操作手册

我们目前使用的是nginx1.20.2和openssl-1.0.2k。其中查看服务器上openssl的脚本名利是&#xff1a;openssl version -v/-a 一&#xff1a;需要的包 1:nginx-1.25.1.tar.gz 2:openssl-1.1.1u.tar.gz 二&#xff1a;升级操作 1&#xff1a;检查当前nginx版本 /usr/local/nginx…

7.物联网操作系统互斥信号量

1.使用互斥信号量解决信号量导致的优先级反转&#xff0c; 2.使用递归互斥信号量解决互斥信号量导致的死锁。 3.高优先级主函数中多次使用同一信号量的使用&#xff0c;使用递归互斥信号量&#xff0c;但要注意每个信号量的使用要对应一个释放 优先级翻转问题 优先级翻转功能需…

gateway过滤器没生效,特殊原因

看这边文章的前提&#xff0c;你要会gateway&#xff0c;知道过滤器怎么配置&#xff1f; 直接来看过滤器&#xff0c;局部过滤器 再来看配置 请求路径 http://127.0.0.1:8080/appframework/services/catalog/catalogSpecials.json?pageindex1&pagesize10&pkidd98…

网络安全知识点整理(作业2)

目录 一、js函数声明->function 第一种 第二种 第三种 二、this关键字 this使用场合 1.全局环境 2.构造函数 3.对象的方法 避免多层this 三、js的同步与异步 定时器 setTimeout和setInterval 同步与异步的例子 四、宏任务与微任务 分辨宏任务与微任务 一、js…

深入解析项目管理中的用户流程图

介绍用户流程图 用户流程图的定义 用户流程图(User Flow Diagram)是一种可视化工具&#xff0c;它描绘了用户在应用或网站上完成任务的过程。这些任务可以是购物、注册账户、查找信息等&#xff0c;任何需要用户交互的动作都可以在用户流程图中找到。 用户流程图的重要性 用…

spring中常用的注解

前后端传值的注解 PathVariable和RequestParam PathVariable用于获取路径参数&#xff0c;RequestParam用于获取查询参数。 GetMapping("/klasses/{klassId}/teachers") public List<Teacher> getKlassRelatedTeachers(PathVariable("klassId") Lon…

我对排序算法的理解

排序算法一直是一个很困惑我的问题&#xff0c;早在刚开始接触 数据结构的时候&#xff0c;这个地方就很让我不解。就是那种&#xff0c;总是感觉少了些什么的感觉。一开始&#xff0c;重新来过&#xff0c;认真来学习这一部分&#xff0c;也总是学着学着就把概念记住了。过了一…

案例|会展大数据服务系统 智能服务体系建设实践

根据相关的市场调查发现在国内进行的2000多个会展项目中&#xff0c;仅有15%的项目能够提供相关主题网站基本业务和服务&#xff0c;且提供的服务并不能够满足会展各方的应用&#xff0c;剩余的大部门会展项目信息系统构建的不够完善、技术性差、应用复杂等&#xff0c;甚至提供…

三、JVM-如何判断对象已死问题

内存模型以及如何判定对象已死问题 体验与验证 2.4.5.1 使用visualvm visualgc插件下载链接 &#xff1a;https://visualvm.github.io/pluginscenters.html 选择对应JDK版本链接—>Tools—>Visual GC 若上述链接找不到合适的&#xff0c;大家也可以自己在网上下载对应…

Hive巡检脚本

Hive巡检脚本的示例&#xff1a; #!/bin/bash# 设置Hive连接信息 HIVE_HOST"your_hive_host" HIVE_PORT"your_hive_port" HIVE_USER"your_hive_username" HIVE_PASSWORD"your_hive_password"# 设置巡检结果输出文件路径 OUTPUT_FILE&…

服务器的shell脚本

shell脚本语句可以执行linux的操作语句。 linux相当于网页&#xff0c;shell相当于java。可以解释编写执行逻辑。 shell的开头以&#xff1a;#!bin/sh 定义解析方式&#xff0c;不同的linuxe内核解释方式不同。大多数内核支持sh&#xff08;bash&#xff09;方式。 执行sh文件可…

输入筛选框搜索

文章目录 输入筛选框实现效果图需求前端工具版本添加依赖main.js导入依赖 代码 后端代码对应 sql对应 mapper.xml 文件的动态 sql 输入筛选框实现 效果图 需求 通过筛选框&#xff0c;选择公司&#xff0c;传入后端&#xff0c;后端根据公司名称去文章的内容中进行模糊查询 …

照片回收站是什么?恢复照片就靠这3招!

“我电脑里本来保存了很多照片&#xff0c;但我不小心给删除了&#xff0c;还能恢复吗&#xff1f;由于本人是个电脑新手&#xff0c;求一些简单的方法。感谢&#xff01;” 在照片拍摄后&#xff0c;很多朋友可能会选择在电脑上对照片进行保存。但是由于各种原因&#xff0c;电…

Simulink仿真模块-Signal Builder

目录 说明 实例 Signal Builder是创建和生成可交替的具有分段线性波形的信号组。 在仿真库中的位置为:Simulink / Sources说明 Signal Builder 模块允许创建可交替的分段线性信号源组,并在模型中使用。可以快速将信号组切换入模型或切换出模型,以便于测试。在 Signal Buil…

Linux【网络编程】之深入理解TCP协议

Linux【网络编程】之深入理解TCP协议 TCP协议TCP协议段格式4位首部长度---TCP报头长度信息 TCP可靠性&#xff08;确认应答&#xff09;&& 提高传输效率确认应答(ACK)机制32位序号与32为确认序号 16位窗口大小---自己接收缓冲区剩余空间的大小16位紧急指针---紧急数据处…

js 视频水印去除

参考文档&#xff1a;http://txapi.cn/api 收费 识别要解析的类型&#xff08;需要收费&#xff09; const axios require(axios) class Parse{// 初始化方法constructor() {this.token "Z1QljZOZiT4NTG" // token// 请求地址数组对象this.req_urls {dy: "…

无涯教程-Lua - 文件I/O

I/O库用于在Lua中读取和处理文件。 Lua中有两种文件操作&#xff0c;即隐式(Implicit)和显式(Explicit)操作。 对于以下示例&#xff0c;无涯教程将使用例文件test.lua&#xff0c;如下所示。 -- sample test.lua -- sample2 test.lua 一个简单的文件打开操作使用以下语句。…

Unity3D坐标与UI坐标转化差别过大

在UI Canvas的Render Mode模式是Screen Space-Camera模式极其容易3D坐标值转UI坐标出错。 **具体原因是&#xff1a;**Canvas的Rect Transform锁定&#xff0c;其Scale的倍数值不是1&#xff0c;所以导致从3D的坐标数值转换成UI坐标时就会出现问题。 正确做法&#xff1a; 1、 …

ChatGPT 是如何工作的:从预训练到 RLHF

欢迎来到人工智能的未来:生成式人工智能!您是否想知道机器如何学习理解人类语言并做出相应的反应?让我们来看看ChatGPT ——OpenAI 开发的革命性语言模型。凭借其突破性的 GPT-3.5 架构,ChatGPT 席卷了世界,改变了我们与机器通信的方式,并为人机交互开辟了无限可能。随着…