FPGA时序分析与时序约束(一)

一、为什么要进行时序分析和时序约束

        PCB通过导线将具有相关电气特性的信号相连接,这些电气信号在PCB上进行走线传输时会产生一定的传播延时。

        而FPGA内部也有着非常丰富的可配置的布线资源,能够让位于不同位置的逻辑资源块、时钟处理单元、BLOCK RAM、DSP和接口模块等资源能够相互通信,完成所需功能。

        FPGA的布线同PCB的走线一样,也会由于走线的长短不同而产生或大或小的传输延时(走线延时)。FPGA信号经过逻辑门电路进行各种运算也会产生延时(逻辑延时)。那么多个信号从FPGA的一端输入,经过一定的逻辑门电路处理后从FPGA的另一端输出,如何保证各个信号的延时一致呢?这个时候就需要进行时序分析,从而进行时序约束,从而保证FPGA的信号能够相互协同正常工作

        假设有一个信号输入FPGA中,在FPGA内部经过一些逻辑处理,最后进行输出,那么这些走线和处理都需要时间(走线延时和逻辑延时)。例如下图,输入信号到达逻辑处理A需要5ns,进行处理需要1ns,然后到逻辑处理C需要7ns,进行处理需要2ns,最后达到输出需要3ns,这条路径是所有路径中耗时最短的。但是FPGA不知道这条路径耗时最短,如果不对其进行时序约束,很可能会随便选一条路径进行布线,此时如果对系统的延时有要求,就可能出现信号错乱的情况

        

二、什么是时序分析和时序约束

        FPGA的时序分析与约束需要设计者根据实际的系统功能,通过时序约束的方式提出时序要求;FPGA编译工具根据设计者的时序要求,进行布局布线;编译完成后,FPGA编译工具还需要针对布局布线的结果,套用特定的时序模型,给出最终的时序分析和报告;设计者通过查看时序报告,确认布局布线后的时序结果是否满足设计要求。

        因此时序分析就是遍历电路存在的所有时序路径,计算信号在这些路径上的传播延时,使用特定的时序模型,针对特定的电路进行分析系统时序是否满足要求。

        时序约束就是对设计的电路提出时序上的要求,一般来说其可以细分为内部时钟约束 、IO口时序约束、偏移约束、静态路径约束和例外路径约束等。

三、时序约束的基本路径

从前面知道了时序分析是遍历电路存在的所有时序路径,那么就需要知道都有哪些路径

FPGA 时序约束所覆盖的时序路径主要有4种:

1.FPGA内部寄存器之间的时序路径,即reg2reg
2.输人引脚到FPGA内部寄存器的时序路径,即pin2reg
3.FPGA内部寄存器到输出引脚的时序路径,即reg2pin
4.输入引脚到输出引脚之间的时序路径(不通过寄存器),即pin2pin

        其中reg2reg、pin2reg、reg2pin都和寄存器有关,需要进行时序约束,因为要确保数据信号在时钟锁存沿的建立时间保持时间内稳定;但pin2pin本质就是纯组合逻辑电路,一般直接约束延时范围,因为pin2pin路径的信号传输通常不通过时钟。

在4种时序路径中,

pin2reg需要经过3个延迟,例如Device A到rega需要经过Tco(寄存器输出延时)、Input Delay(输入走线延迟)、Internal Delay(FPGA内部走线延迟);

reg2reg需要经过2个延迟,例如rega到regb需要经过Tco、Data Path Delay(FPGA内部组合逻辑和数据走线延迟);

reg2pin需要经过3个延迟,例如regb到Device B需要经过Tco、Internal Delay、Output Delay(输出走线延迟);

pin2pin需要经过1个延迟,例如dinb到doutb需要经过Data Path Delay。

四、时序分析与约束的基本概念

知道有哪些路径之后, 就要明白时序分析、约束具体在分析约束什么数据或者参数,因此就需要从一些基本概念入手,理清楚要根据什么去进行分析和约束

4.1 Clock Uncertainty

        时钟不确定性(Clock Uncertainty)主要由时钟抖动(Clock Jitter)和时钟偏差(Clock Skew)构成。

       一个理想的时钟是占空比为50%且周期固定的方波,但实际上这样的时钟是不存在的,一定会有超前或者滞后的偏移,即时钟抖动

        时钟偏差是指同一个时钟域内的时钟信号到达数字电路各个部分(一般指寄存器)所用时间的差异。 

        

        所以要对Clock Uncertainty进行约束,使时钟更加贴合实际。

4.2 建立时间和保持时间

        建立时间( Setup Time,Tsu),在时钟上升沿之前数据必须稳定的最短时间。若不满足 setup time,数据无法进入寄存器,数据采样失败。

        保持时间(Hold Time,Th),即在时钟上升沿之后数据必须稳定的最短时间。若不满足 hold time,数据也无法进入寄存器,数据采样失败。

        寄存器采样需要同时满足建立时间和保持时间才能保证采样成功,因此也要对建立时间和保持时间进行约束。

4.3 发起沿和采样沿

        寄存器发送数据和接收数据需要在时钟边沿进行,因此都有一个发起沿和一个采样沿。通常情况下这两个边沿会有一个时钟周期的差别。
        发起沿(Launch edge)是发送数据的时钟边沿,通常选择上升沿。发起沿是源寄存器采样的时间点,也是时序分析路径的起点。
        采样沿(Capture edge)是采样到该数据的时钟边沿,通常也是上升沿。采样沿是目的寄存器采样的时间点,也是时序分析路径的终点。

4.4 数据到达时间和时钟达到时间

        源寄存器rega在clk的上升沿发送数据,要经过一个时间才能到达目的寄存器regb(原因就是有走线、寄存器输出、逻辑处理延时),而这个时间则被称为数据到达时间(Data Arrival Time)。    

        通常选择发送沿Launch edge作为零时刻基准,数据经过Tclka(时钟信号从起点到寄存器时钟端口的时钟延时)、Tco时间,到达Q端口点,再从rega的Q端口经过组合逻辑以及布线的线延时(Tdata)到达接收端的D端口。


因此有公式:

Data Arrival Time = Launch Edge + Tclka + Tco + Tdata

        目的寄存器对数据进行采样,4.3中提到通常情况下发送沿和采样沿会有一个时钟周期的差别,因此采样沿时间Capture Edge就是发送沿Launch edge+一个时钟周期clkb。 

        所以时钟到达时间(Clock Arrival Time)为

Clock Arrival Time=Capture time + Tclkb

4.5 建立时间下的数据需求时间

        前面我们知道在时钟上升沿之前数据必须稳定的最短时间为建立时间,那么对于reg2来说,要想满足建立时间,就必须要在建立时间之前接收到reg1的数据,这个时间就是建立时间下的数据需求时间(Data Required Time - Setup)

因此

        Data Required Time= Clock Arrival Time- T_{su}-Setup Uncertainty 

4.6 保持时间下的数据需求时间

        同理,时钟上升沿之后数据必须稳定的最短时间为保持时间,那么当regb采样到数据之后要满足保持时间,那么这个时间就是保持时间下的数据需求时间(Data Required Time - Hold)

因此 

Data Required Time= Clock Arrival Time+ T_{su}+Setup Uncertainty

4.7 建议时间裕量

        在4.5中得到了寄存器满足建立时间下数据接收时间,例如时钟到达时间为5ns,建立时间Tsu为2ns,暂且将时钟不确定忽略,那么上一级数据到达最晚为5-2=3ns,因此上一级数据可以在1ns、2ns的时候到达。

        如果数据在1ns到达目标寄存器,那么建立时间裕量(Setup slack)就是3-1=2ns。

4.8 保持时间裕量

        保持时间裕量(Hold slack)同理。

参考文献:

《FPGA时序约束与分析》
《正点原子FPGA静态时序分析与时序约束》 
《Intel Quartus Prime Standard Edition用户指南: Timing Analyzer》
《Vivado Design Suite 用户指南: 设计分析与收敛技巧 (UG906)》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/197646.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【未解决】huggingface模型文件下载地址为什么会变?

问题描述 上次我们已经分析了huggingface加载模型时候的文件目录应该是怎么样的?(感兴趣的可以主页搜索“【经验分享】huggingface模型加载过程下载到cache文件目录具体是怎么组织的?以及都会有什么文件目录,每个文件目录是什么&a…

翻译: 生成式人工智能的工作原理How Generative AI works

ChatGPT 和 Bard 等系统生成文本的能力几乎像魔法一样。它们确实代表了 AI 技术的一大步进。但是文本生成到底是如何工作的呢?在这个视频中,我们将看看生成式 AI 技术的底层原理,这将帮助你理解你可以如何使用它,以及何时可能不想…

【开源】基于JAVA的考研专业课程管理系统

项目编号: S 035 ,文末获取源码。 \color{red}{项目编号:S035,文末获取源码。} 项目编号:S035,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 考研高校模块2.3 高…

免费的SEO外链发布工具,提升排名的利器

互联网已经成为信息传播和商业发展的重要平台。而对于拥有网站的个人、企业来说,如何让自己的网站在搜索引擎中脱颖而出?SEO(Search Engine Optimization)作为提高网站在搜索引擎中排名的关键手段. 什么是SEO外链? S…

【STM32入门】3.OLED屏幕

1.OLED引脚 OLED屏幕的接线按图所示,本例中用的是4管脚OLED屏幕 2.驱动程序 配套的驱动程序是“OLED.c",主要由以下函数构成:1、初始化;2、清屏;3、显示字符;4、显示字符串;5、显示数字…

使用激光雷达(LiDAR)和相机进行3D物体跟踪

使用相机和激光雷达进行时间到碰撞(TTC)计算 在我的先前文章中,我介绍了通过检测关键点和匹配描述符进行2D特征跟踪的主题。在本文中,我将利用这些文章中的概念,以及更多的内容,开发一个软件流水线&#xf…

STM32串口通信初探:使用HAL库实现基本功能

在本文中,我们将探索如何使用STM32的HAL库来实现串口通信的基本功能。串口通信是一种常见的外设通信方式,用于在微控制器和其他外部设备之间进行数据传输。在STM32系列微控制器中,HAL库提供了简单且灵活的方法来实现串口通信。我们将重点讨论…

深入理解强化学习——马尔可夫决策过程:蒙特卡洛方法-[代码实现]

分类目录:《深入理解强化学习》总目录 在文章《深入理解强化学习——马尔可夫决策过程:蒙特卡洛方法-[基础知识]》中我们介绍了利用蒙特卡洛方法计算马尔可夫决策过程价值的方法,本文将用代码定义一个采样函数。采样函数需要遵守状态转移矩阵…

使用栈解决括号匹配问题(详解)

项目结构 项目头文件的代码或截图 头文件代码 #ifndef LINKSTACK_H #define LINKSTACK_H #include <stdio.h> #include <stdlib.h> // 链式栈的节点 typedef struct LINKNODE {struct LINKNODE* next; }LinkNode; // 链式栈 typedef struct LINKSTACK {LinkNode h…

【Java 基础】19 多线程基础

文章目录 进程和线程进程&#xff08;Process&#xff09;线程&#xff08;Thread&#xff09; 线程的创建1&#xff09;继承 Thread 类2&#xff09;实现 Runnable 接口3&#xff09;使用 Lambda 表达式4&#xff09;总结 线程的状态状态的分类状态间转换 多线程是一种 同时执…

6、原型模式(Prototype Pattern,不常用)

原型模式指通过调用原型实例的Clone方法或其他手段来创建对象。 原型模式属于创建型设计模式&#xff0c;它以当前对象为原型&#xff08;蓝本&#xff09;来创建另一个新的对象&#xff0c;而无须知道创建的细节。原型模式在Java中通常使用Clone技术实现&#xff0c;在JavaSc…

SpringBoot系列之集成Jedis教程

SpringBoot系列之集成Jedis教程&#xff0c;Jedis是老牌的redis客户端框架&#xff0c;提供了比较齐全的redis使用命令&#xff0c;是一款开源的Java 客户端框架&#xff0c;本文使用Jedis3.1.0加上Springboot2.0&#xff0c;配合spring-boot-starter-data-redis使用&#xff0…

基恩士软件的基本操作(六,KV脚本的使用)

目录 什么是KV脚本&#xff1f; KV脚本有什么用&#xff1f; 怎么使用KV脚本&#xff08;脚本不能与梯形图并联使用&#xff09;&#xff1f; 插入框脚本&#xff08;CtrlB&#xff09; 插入域脚本&#xff08;CtrlR&#xff09; 区别 脚本语句&#xff08;.T是字符串类…

【C进阶】C程序是怎么运作的呢?-- 程序环境和预处理(上)

前言&#xff1a; 由于c语言的程序编译链接的这块知识点不清楚&#xff0c;回来复习一遍&#xff0c;以便于好理解c知识&#xff0c;我会尽快更新下一篇文章。 目录 1.程序的翻译环境和执行环境 2.翻译环境&#xff08;编译链接&#xff09; 编译&#xff08;编译器&#xf…

算符优先语法分析程序设计与实现

制作一个简单的C语言词法分析程序_用c语言编写词法分析程序-CSDN博客文章浏览阅读378次。C语言的程序中&#xff0c;有很单词多符号和保留字。一些单词符号还有对应的左线性文法。所以我们需要先做出一个单词字符表&#xff0c;给出对应的识别码&#xff0c;然后跟据对应的表格…

电子学会C/C++编程等级考试2022年09月(四级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:最长上升子序列 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … &l…

IoT DC3 是一个基于 Spring Cloud 全开源物联网平台 linux docker部署傻瓜化步骤

如有不了解可先参考我的另一篇文章本地部署:IoT DC3 是一个基于 Spring Cloud 的开源的、分布式的物联网(IoT)平台本地部署步骤 如有不了解可先参考我的另一篇文章本地部署: 1 环境准备: JDK 8 以上 docker 安装好 下载docker-compose-dev.yml 文件 执行基础环境docker安装 …

gitlab-jenkins-shell-helm-chart-k8s自动化部署微服务

1.准备好编译环境的容器&#xff0c;所有容器的镜像制作在gemdale-dockerfile这个代码库里面&#xff0c;也可以直接拉取官方镜像部署 docker run --name node1420-patternx -v /data/var/www/:/data/var/www/ -v /var/jenkins_home/:/var/jenkins_home/ -v /mnt/hgfs/:/mnt/h…

zabbix的自动发现机制:

zabbix的自动发现机制: zabbix客户端主动的和服务端联系&#xff0c;将自己的地址和端口发送给服务端&#xff0c;实现自动添加监控主机 客户端是主动的一方 缺点&#xff1b;如果自定义网段中主机数量太多&#xff0c;等级耗时会很久&#xff0c;而且这个自动发现机制不是很…

后端部署-阿里云服务器-开设端口-域名解析-安全证书-备案

本文以阿里云的轻量级数据库为例子。 前言 要搭建一个完整的后端系统一般的步骤&#xff1a; 获得一台服务器----->开设端口----->搭建后台所需要的语言和应用---->利用公网ip地址测试后端程序------->购买域名和证书-------->域名绑定和解析------->icp备…