人工智能|网络爬虫——用Python爬取电影数据并可视化分析

一、获取数据

1.技术工具

IDE编辑器:vscode

发送请求:requests

解析工具:xpath

def Get_Detail(Details_Url):Detail_Url = Base_Url + Details_UrlOne_Detail = requests.get(url=Detail_Url, headers=Headers)One_Detail_Html = One_Detail.content.decode('gbk')Detail_Html = etree.HTML(One_Detail_Html)Detail_Content = Detail_Html.xpath("//div[@id='Zoom']//text()")Video_Name_CN,Video_Name,Video_Address,Video_Type,Video_language,Video_Date,Video_Number,Video_Time,Video_Daoyan,Video_Yanyuan_list = None,None,None,None,None,None,None,None,None,Nonefor index, info in enumerate(Detail_Content):if info.startswith('◎译  名'):Video_Name_CN = info.replace('◎译  名', '').strip()if info.startswith('◎片  名'):Video_Name = info.replace('◎片  名', '').strip()if info.startswith('◎产  地'):Video_Address = info.replace('◎产  地', '').strip()if info.startswith('◎类  别'):Video_Type = info.replace('◎类  别', '').strip()if info.startswith('◎语  言'):Video_language = info.replace('◎语  言', '').strip()if info.startswith('◎上映日期'):Video_Date = info.replace('◎上映日期', '').strip()if info.startswith('◎豆瓣评分'):Video_Number = info.replace('◎豆瓣评分', '').strip()if info.startswith('◎片  长'):Video_Time = info.replace('◎片  长', '').strip()if info.startswith('◎导  演'):Video_Daoyan = info.replace('◎导  演', '').strip()if info.startswith('◎主  演'):Video_Yanyuan_list = []Video_Yanyuan = info.replace('◎主  演', '').strip()Video_Yanyuan_list.append(Video_Yanyuan)for x in range(index + 1, len(Detail_Content)):actor = Detail_Content[x].strip()if actor.startswith("◎"):breakVideo_Yanyuan_list.append(actor)print(Video_Name_CN,Video_Date,Video_Time)f.flush()try:csvwriter.writerow((Video_Name_CN,Video_Name,Video_Address,Video_Type,Video_language,Video_Date,Video_Number,Video_Time,Video_Daoyan,Video_Yanyuan_list))except:pass

保存数据:csv

if __name__ == '__main__':with open('movies.csv','a',encoding='utf-8',newline='')as f:csvwriter = csv.writer(f)csvwriter.writerow(('Video_Name_CN','Video_Name','Video_Address','Video_Type','Video_language','Video_Date','Video_Number','Video_Time','Video_Daoyan','Video_Yanyuan_list'))spider(117)

2.爬取目标

本次爬取的目标网站是阳光电影网https://www.ygdy8.net,用到技术为requests+xpath。主要获取的目标是2016年-2023年之间的电影数据。

3.字段信息

获取的字段信息有电影译名、片名、产地、类别、语言、上映时间、豆瓣评分、片长、导演、主演等,具体说明如下:

 二、数据预处理

技术工具:jupyter notebook

1.加载数据

首先使用pandas读取刚用爬虫获取的电影数据

2.异常值处理

这里处理的异常值包括缺失值和重复值

首先查看原数据各字段的缺失情况

从结果中可以发现缺失数据还蛮多的,这里就为了方便统一删除处理,同时也对重复数据进行删除

可以发现经过处理后的数据还剩1711条。 

3.字段处理

由于爬取的原始数据中各个字段信息都很乱,出现很多“/”“,”之类的,这里统一进行处理,主要使用到pandas中的apply()函数,同时由于我们分析的数2016-2023年的电影数据,除此之外的进行删除处理

# 数据预处理
data['Video_Name_CN'] = data['Video_Name_CN'].apply(lambda x:x.split('/')[0]) # 处理Video_Name_CN
data['Video_Name'] = data['Video_Name'].apply(lambda x:x.split('/')[0]) # 处理Video_Name
data['Video_Address'] = data['Video_Address'].apply(lambda x:x.split('/')[0])  # 处理Video_Address
data['Video_Address'] = data['Video_Address'].apply(lambda x:x.split(',')[0].strip())
data['Video_language'] = data['Video_language'].apply(lambda x:x.split('/')[0])
data['Video_language'] = data['Video_language'].apply(lambda x:x.split(',')[0])
data['Video_Date'] = data['Video_Date'].apply(lambda x:x.split('(')[0].strip())
data['year'] = data['Video_Date'].apply(lambda x:x.split('-')[0])
data['Video_Number'] = data['Video_Number'].apply(lambda x:x.split('/')[0].strip())
data['Video_Number'] = pd.to_numeric(data['Video_Number'],errors='coerce')
data['Video_Time'] = data['Video_Time'].apply(lambda x:x.split('分钟')[0])
data['Video_Time'] = pd.to_numeric(data['Video_Time'],errors='coerce')
data['Video_Daoyan'] = data['Video_Daoyan'].apply(lambda x:x.split()[0])
data.drop(index=data[data['year']=='2013'].index,inplace=True)
data.drop(index=data[data['year']=='2014'].index,inplace=True)
data.drop(index=data[data['year']=='2015'].index,inplace=True)
data.dropna(inplace=True)
data.head()

三、数据可视化

1.导入可视化库

本次可视化主要用到matplotlib、seaborn、pyecharts等第三方库

import matplotlib.pylab as plt
import seaborn as sns
from pyecharts.charts import *
from pyecharts.faker import Faker
from pyecharts import options as  opts 
from pyecharts.globals import ThemeType
plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False   #解决符号无法显示

2.分析各个国家发布的电影数量占比

# 分析各个国家发布的电影数量占比
df2 = data.groupby('Video_Address').size().sort_values(ascending=False).head(10)
a1 = Pie(init_opts=opts.InitOpts(theme = ThemeType.LIGHT))
a1.add(series_name='电影数量',data_pair=[list(z) for z in zip(df2.index.tolist(),df2.values.tolist())],radius='70%',)
a1.set_series_opts(tooltip_opts=opts.TooltipOpts(trigger='item'))
a1.render_notebook()

3.发布电影数量最高Top5导演

# 发布电影数量最高Top5导演
a2 = Bar(init_opts=opts.InitOpts(theme = ThemeType.DARK))
a2.add_xaxis(data['Video_Daoyan'].value_counts().head().index.tolist())
a2.add_yaxis('电影数量',data['Video_Daoyan'].value_counts().head().values.tolist())
a2.set_series_opts(itemstyle_opts=opts.ItemStyleOpts(color='#B87333'))
a2.set_series_opts(label_opts=opts.LabelOpts(position="top"))
a2.render_notebook()

4.分析电影平均评分最高的前十名国家

# 分析电影平均评分最高的前十名国家
data.groupby('Video_Address').mean()['Video_Number'].sort_values(ascending=False).head(10).plot(kind='barh')
plt.show()

5.分析哪种语言最受欢迎

# 分析哪种语言最受欢迎
from pyecharts.charts import WordCloud
import collections
result_list = []
for i in data['Video_language'].values:word_list = str(i).split('/')for j in word_list:result_list.append(j)
result_list
word_counts = collections.Counter(result_list)
# 词频统计:获取前100最高频的词
word_counts_top = word_counts.most_common(100)
wc = WordCloud()
wc.add('',word_counts_top)
wc.render_notebook()

6.分析哪种类型电影最受欢迎

# 分析哪种类型电影最受欢迎
from pyecharts.charts import WordCloud
import collections
result_list = []
for i in data['Video_Type'].values:word_list = str(i).split('/')for j in word_list:result_list.append(j)
result_list
word_counts = collections.Counter(result_list)
# 词频统计:获取前100最高频的词
word_counts_top = word_counts.most_common(100)
wc = WordCloud()
wc.add('',word_counts_top)
wc.render_notebook()

7.分析各种类型电影的比例

# 分析各种类型电影的比例
word_counts_top = word_counts.most_common(10)
a3 = Pie(init_opts=opts.InitOpts(theme = ThemeType.MACARONS))
a3.add(series_name='类型',data_pair=word_counts_top,rosetype='radius',radius='60%',)
a3.set_global_opts(title_opts=opts.TitleOpts(title="各种类型电影的比例",pos_left='center',pos_top=50))
a3.set_series_opts(tooltip_opts=opts.TooltipOpts(trigger='item',formatter='{a} <br/>{b}:{c} ({d}%)'))
a3.render_notebook()

8.分析电影片长的分布

# 分析电影片长的分布
sns.displot(data['Video_Time'],kde=True)
plt.show()

9.分析片长和评分的关系

# 分析片长和评分的关系
plt.scatter(data['Video_Time'],data['Video_Number'])
plt.title('片长和评分的关系',fontsize=15)
plt.xlabel('片长',fontsize=15)
plt.ylabel('评分',fontsize=15)
plt.show()

10.统计 2016 年到至今的产出的电影总数量

# 统计 2016 年到至今的产出的电影总数量
df1 = data.groupby('year').size()
line = Line()
line.add_xaxis(xaxis_data=df1.index.to_list())
line.add_yaxis('',y_axis=df1.values.tolist(),is_smooth = True)  
line.set_global_opts(xaxis_opts=opts.AxisOpts(splitline_opts = opts.SplitLineOpts(is_show=True)))
line.render_notebook()

四、总结

本次实验通过使用爬虫获取2016年-2023年的电影数据,并可视化分析的得出以下结论:

1.2016年-2019年电影数量逐渐增大,2019年达到最大值,从2020年开始迅速逐年下降。

2.发布电影数量最多的国家是中国和美国。

3.电影类型最多的剧情片。

4.电影片长呈正态分布,且片长和评分呈正相关关系。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/197444.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[MySQL--基础]多表查询

前言 ⭐Hello!这里是欧_aita的博客。 ⭐今日语录&#xff1a;生活中最大的挑战就是发现自己是谁。然后&#xff0c;坚定不移地成为那个人。 ⭐个人主页&#xff1a;欧_aita ψ(._. )>⭐个人专栏&#xff1a; 数据结构与算法 MySQL数据库 多表查询 前言多表关系概述&#x1f…

为什么 SQL 不适合图数据库

背景 “为什么你们的图形产品不支持 SQL 或类似 SQL 的查询语言&#xff1f;” 过去&#xff0c;我们的一些客户经常问这个问题&#xff0c;但随着时间的推移&#xff0c;这个问题变得越来越少。 尽管一度被忽视&#xff0c;但图数据库拥有无缝设计并适应其底层数据结构的查询…

四层LVS与七层Nginx负载均衡的区别

一、四层负载均衡与七层负载均衡&#xff1a; &#xff08;1&#xff09;四层负载均衡&#xff1a; 四层负载均衡工作在 OSI 七层模型的第四层&#xff08;传输层&#xff09;&#xff0c;指的是负载均衡设备通过报文中的目标IP地址、端口和负载均衡算法&#xff0c;选择到达的…

赛事回顾 | 首届“智航杯“全国无人机智能算法竞赛落幕

11月28日&#xff0c;首届“智航杯”全国无人机智能算法竞赛实物赛在海南省三亚市成功落下帷幕。此次竞赛自2023年4月启动以来&#xff0c;共有来自全国145所高等院校和50多所企事业单位的1253支团队、3655人报名参赛&#xff0c;最终有6支队伍脱颖而出&#xff0c;入围了实物赛…

Elasticsearch:评估 RAG - 指标之旅

作者&#xff1a;Quentin Herreros&#xff0c;Thomas Veasey&#xff0c;Thanos Papaoikonomou 2020年&#xff0c;Meta发表了一篇题为 “知识密集型NLP任务的检索增强生成” 的论文。 本文介绍了一种通过利用外部数据库将语言模型 (LLM) 知识扩展到初始训练数据之外的方法。 …

11.9每日一题(无穷比无穷型的极限:提出并消去无穷因子、抓大头、拆多项式)

注&#xff1a;1、 为x的绝对值&#xff0c;因为x趋向负无穷&#xff0c;所以为 -x 2、用有理运算法则拆分式子时&#xff0c;注意判断极限是否存在

Python 网络爬虫(二):HTTP 基础知识

《Python入门核心技术》专栏总目录・点这里 文章目录 1. HTTP 协议简述2. HTTP 请求过程3. HTTP 的结构3.1 请求行3.2 请求头3.3 请求体3.4 状态行3.5 响应头3.6 响应体 4. Cookie 状态管理5. HTTP 请求示例6. 总结 大家好&#xff0c;我是水滴~~ 在准备学习网络爬虫之前&…

springboot慢性胃炎管理系统-计算机毕设 附源码 35541

SpringBoot慢性胃炎管理系统 摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;医疗行业当然也不例外。慢性胃炎管理系统是以实际运用为开发背景&#xff0c;运用软件工程…

PLC通过485Modbus转Profinet网关与温控表通讯在发酵罐的应用

前提&#xff1a;在自动化控制系统中&#xff0c;PLC通常需要和各种设备进行数据通讯&#xff0c;其中就包括温控表。而这些设备之间的通讯常常需要通过485Modbus转Profinet网关&#xff08;XD-MDPN100&#xff09;来实现。 方案&#xff1a;在一些应用场合中&#xff0c;Profi…

Spring Boot 3 整合 Spring Cache 与 Redis 缓存实战

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

2023/11/30JAVAweb学习(postman,各种参数,统一响应数据,三层架构,分层解耦,bean组件扫描,Bean注入及解决方式)

数组json形式 想切换实现类,只需要只在你需要的类上添加 Component 如果在同一层,可以更改扫描范围,但是不推荐这种方法 注入时存在多个同类型bean解决方式

C++不同平台下的RTTI实现

给定一个含有虚函数的对象的地址&#xff0c;找到对应的类名&#xff0c;不同平台下方法也不同&#xff0c;这是由于RTTI实现并没有统一的标准。 Linux&#xff1a; #include <iostream> #include <typeinfo>class Person { public:virtual void func(){std::cout…

正则表达式(3):入门

正则表达式&#xff08;3&#xff09;&#xff1a;入门 小结 本博文转载自 从这篇文章开始&#xff0c;我们将介绍怎样在Linux中使用”正则表达式”&#xff0c;如果你想要学习怎样在Linux中使用正则表达式&#xff0c;这些文章就是你所需要的。 在认识”正则表达式”之前&am…

ODN光纤链路全程衰减如何计算

在FTTH等宽带光纤接入工程设计中&#xff0c;需根据应用系统的相应波长计算ODN光纤链路的全程衰减&#xff0c;一方面验证是否满足系统的光功率预算指标要求&#xff0c;另一方面作为工程验收的参考指标。 1 计算方法 ODN光纤链路的全程衰减是指从OLT至ONU的光纤链路中&#xf…

LinuxBasicsForHackers笔记 -- 控制文件和目录权限

对于每个文件和目录&#xff0c;我们可以指定文件所有者、特定用户组以及所有其他用户的权限状态。 不同类型的用户 在Linux中&#xff0c;root用户是拥有一切权力的。 root 用户基本上可以在系统上执行任何操作。 系统上的其他用户具有有限的能力和权限&#xff0c;并且几乎…

PHP项目启动记录

PHP项目启动记录 1. 项目整体目录2. bash_profile3. nginx的conf配置4. vim /etc/hosts5. php -v6.修改nginx后重新加载nginx7. npm run watch-app --moduleattendance --platformmobile8. vim ~/.zshrc 1. 项目整体目录 2. bash_profile ~/.bash_profile是Mac系统中的一个配置…

JVM之垃圾回收与算法(四)

垃圾回收与算法 1.如何确定垃圾 1.1. 引用计数法 在 Java 中&#xff0c;引用和对象是有关联的。如果要操作对象则必须用引用进行。因此&#xff0c;很显然一个简单的办法是通过引用计数来判断一个对象是否可以回收。简单说&#xff0c;即一个对象如果没有任何与之关联的引用…

网页文章采集工具-人工智能AI功能

简数采集器是一款支持人工智能AI功能的网页文章采集工具&#xff0c;它可以调用百度的文心一言AI对采集的数据进行分析&#xff0c;处理&#xff0c;内容创作等等&#xff0c;根据你的需求进行更加灵活的数据采集和处理。 文心一言人工智能AI功能使用方法&#xff1a; 1. 填写…

7、Qt延时的使用

一、说明 平时用到两种延时方式QThread::sleep()和QTimer::singleShot() 1、QThread::sleep() QThread类中如下三个静态函数&#xff1a; QThread::sleep(n); //延迟n秒 QThread::msleep(n); //延迟n毫秒 QThread::usleep(n); //延迟n微妙 这种方式使用简单&#xff0c;但是会阻…

OpenAI发布一周年,那些声称超过它的模型都怎么样了?

这篇报告详尽地回顾了自ChatGPT发布一年以来&#xff0c;各种声称与ChatGPT相当或更优的开源大语言模型在各种任务上的表现&#xff01;报告整合了各种评估基准&#xff0c;分析了开源LLMs与ChatGPT在不同任务上的比较。 包括一般能力、代理能力、逻辑推理能力、长文本建模能力…