TensorRT-LLM保姆级教程(一)-快速入门

随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。

本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。

另外,我撰写的大模型相关的博客及配套代码均整理放置在Github:llm-action,有需要的朋友自取。

TensorRT-LLM 诞生的背景

第一、大模型参数量大,推理成本高。以10B参数规模的大模型为例,使用FP16数据类型进行部署至少需要20GB以上(模型权重+KV缓存等)。

第二、纯TensorRT使用较复杂,ONNX存在内存限制。深度学习模型通常使用各种框架(如PyTorch、TensorFlow、Keras等)进行训练和部署,而每个框架都有自己的模型表示和存储格式。因此,开发者通常使用 ONNX 解决深度学习模型在不同框架之间的互操作性问题。比如:TensorRT 就需要先将 PyTorch 模型转成 ONNX,然后再将 ONNX 转成 TensorRT。除此之外,一般还需要做数据对齐,因此需要编写 plugin,通过修改 ONNX 来适配 TensorRT plugin。另外, ONNX 使用Protobuf作为其模型文件的序列化格式。Protobuf是一种轻量级的、高效的数据交换格式,但它在序列化和反序列化大型数据时有一个默认的大小限制。在Protobuf中,默认的大小限制是2GB。这意味着单个序列化的消息不能超过2GB的大小。当你尝试加载或修改超过2GB的ONNX模型时,就会收到相关的限制提示。

第三、 纯FastTransformer使用门槛高。FastTransformer 是用 C++ 实现的;同时,它的接口和文档相对较少,用户可能需要更深入地了解其底层实现和使用方式,这对于初学者来说可能会增加学习和使用的难度。并且 FastTransformer 的生态较小,可用的资源和支持较少,这也会增加使用者在理解和应用 FastTransformer 上的困难。因此,与 Python 应用程序的部署和集成相比,它可能涉及到更多的技术细节和挑战。这可能需要用户具备更多的系统级编程知识和经验,以便将 FastTransformer 与其他系统或应用程序进行无缝集成。

综上所述,TensorRT-LLM 诞生了。

TensorRT-LLM 简介

TensorRT-LLM 为用户提供了易于使用的 Python API 来定义大语言模型 (LLM) 并构建 TensorRT 引擎,以便在 NVIDIA GPU 上高效地执行推理。 TensorRT-LLM 还包含用于创建执行这些 TensorRT 引擎的 Python 和 C++ 运行时组件。 此外,它还包括一个用于与 NVIDIA Triton 推理服务集成的后端;

同时, 使用 TensorRT-LLM 构建的模型可以使用使用张量并行和流水线并行在单 GPU 或者多机多 GPU 上执行。

TensorRT-LLM 的 Python API 的架构看起来与 PyTorch API 类似。 它为用户提供了包含 einsum、softmax、matmul 或 view 等函数的 functional 模块。 layers 模块捆绑了有用的构建块来组装 LLM; 比如: Attention 块、MLP 或整个 Transformer 层。 特定于模型的组件,例如: GPTAttention 或 BertAttention,可以在 models 模块中找到。

为了最大限度地提高性能并减少内存占用,TensorRT-LLM 允许使用不同的量化模式执行模型。 TensorRT-LLM 支持 INT4 或 INT8 权重量化(也称为仅 INT4/INT8 权重量化)以及 SmoothQuant 技术的完整实现。同时,TensorRT-LLM 优化了一系列知名模型在 NVIDIA GPU 上的性能。

支持的设备

TensorRT-LLM 在以下 GPU 上经过严格测试:

  • H100
  • L40S
  • A100/ A30
  • V100 (试验阶段)

注意:如果是上面未列出 GPU,TensorRT-LLM 预计可在基于 Volta、Turing、Ampere、Hopper 和 Ada Lovelace 架构的 GPU 上工作。但是,可能存在某些限制。

关键特性

  • 支持多头注意力( Multi-head Attention,MHA)
  • 支持多查询注意力 ( Multi-query Attention,MQA)
  • 支持分组查询注意力( Group-query Attention,GQA)
  • 支持飞行批处理(In-flight Batching)
  • Paged KV Cache for the Attention
  • 支持 张量并行
  • 支持 流水线并行
  • 支持仅 INT4/INT8 权重量化 (W4A16 & W8A16)
  • 支持 SmoothQuant 量化
  • 支持 GPTQ 量化
  • 支持 AWQ 量化
  • 支持 FP8
  • 支持贪心搜索(Greedy-search)
  • 支持波束搜索(Beam-search)
  • 支持旋转位置编码(RoPE)

支持的模型

  • Baichuan
  • Bert
  • Blip2
  • BLOOM
  • ChatGLM-6B
  • ChatGLM2-6B
  • Falcon
  • GPT
  • GPT-J
  • GPT-Nemo
  • GPT-NeoX
  • LLaMA
  • LLaMA-v2
  • MPT
  • OPT
  • SantaCoder
  • StarCoder

支持的精度

TensorRT-LLM 支持各种数值精度。 但对其中一些数字精度的支持需要特定的GPU架构。

FP32FP16BF16FP8INT8INT4
Volta (SM70)YYNNYY
Turing (SM75)YYNNYY
Ampere (SM80, SM86)YYYNYY
Ada-Lovelace (SM89)YYYYYY
Hopper (SM90)YYYYYY

对于目前发布的v0.5.0,并非所有模型都实现了对 FP8 和量化数据类型(INT8 或 INT4)的支持,具体如下所示。

ModelFP32FP16BF16FP8W8A8 SQW8A16W4A16W4A16 AWQW4A16 GPTQ
BaichuanYYY..YY..
BERTYYY......
BLOOMYYY.YYY..
ChatGLMYYY......
ChatGLM-v2YYY......
FalconYYY......
GPTYYYYYYY..
GPT-JYYYYYYYY.
GPT-NeMoYYY......
GPT-NeoXYYY.....Y
LLaMAYYY.YYYYY
LLaMA-v2YYYYYYYYY
OPTYYY......
SantaCoderYYY......
StarCoderYYY......

TensorRT-LLM 的性能

注意:

下表中的数据作为参考进行提供,以帮助用户验证观察到的性能。这不是 TensorRT-LLM 提供的峰值性能。

不同模型基于 FP16 在 A100 GPUs 上的吞吐量:

ModelBatch SizeTP (1)Input LengthOutput LengthThroughput (out tok/s)
GPT-J 6B6411281283,679
GPT-J 6B32112820481,558
GPT-J 6B3212048128526
GPT-J 6B16120482048650
LLaMA 7B6411281283,486
LLaMA 7B32112820481,459
LLaMA 7B3212048128529
LLaMA 7B16120482048592
LLaMA 70B6441281281,237
LLaMA 70B64412820481,181
LLaMA 70B6442048128272
LLaMA 70B64420482048738
Falcon 180B648128128929
Falcon 180B6481282048923
Falcon 180B6482048128202

不同模型基于 FP16 在 A100 GPUs 上的首Token延迟:

针对批量大小为 1 时,第一个Token延迟的数据,代表终端用户感知在线流任务的延迟。

ModelBatch SizeTP (1)Input Length1st Token Latency (ms)
GPT-J 6B1112812
GPT-J 6B112048129
LLaMA 7B1112816
LLaMA 7B112048133
LLaMA 70B1412847
LLaMA 70B142048377
Falcon 180B1812861
Falcon 180B182048509

结语

本文简要概述了TensorRT-LLM诞生的原因以及基本特征。码字不易,如果觉得有帮助,欢迎点赞收藏加关注。

参考文档

  • https://github.com/NVIDIA/TensorRT-LLM/tree/v0.5.0
  • https://github.com/NVIDIA/TensorRT-LLM/blob/v0.5.0/docs/source/precision.md
  • https://github.com/NVIDIA/TensorRT-LLM/blob/v0.5.0/docs/source/performance.md

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/196964.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简单的界面与数据分离的架构

草图绘制于2021年2月19日 当时用到了:qt的子项目、delegate、view和widget的关系,有感而写的小备忘,2022年底考的软件设计师里面的设计模式虽然可能早已包含,但自己也得有自己啊,要把自己哪怕不成熟的东西也记录下来&…

HDFS客户端及API操作实验

实验二 HDFS客户端及API操作 实验目的: 1.掌握HDFS的客户端操作,包括上传文件、下载文件、重命名、查看目录等; 2.掌握HDFS的Java API使用,能够利用Java API实现上传、下载等常用操作; 实验内容: HDF…

fastadmin权限树。树形下拉框

fastadmin 笔记 权限树 在构造方法中编写相应的代码 值得一提的是,你的表必须有 id 字段以及 pid 字段。 // 必须将结果集转换为数组$ruleList \think\Db::name("state_list")->field(createtime,updatetime, true)->order(id ASC)->select();…

FTP服务文件上传失败,错误码553的排故过程

本文主要记录文件上传失败,错误码553的排故过程。 1 背景 树莓派通过FTP给嵌入式板卡传输文件,好几套设备,发现有的能传输成功,有的传输不成功。树莓派和嵌入式板卡都一样的,出现问题时感觉很懵。 2 逐项对比 2.1 自…

Bugku隐写(png图片16进制格式)

题目链接: 隐写 思路: 图片可以正常查看,用工具010Editor打开查看,文件头和文件尾均正常,也没有隐藏信息。观察其他信息: 0123456789ABCDEF89504E470D0A1A0A0000000D49484452000001F4000001A40806000000…

AF自动登录应用--实现无源码系统单点登录

在企业信息化的进程中,许多组织拥有一系列的老应用系统,这些系统在多年的运行中积累了大量的业务数据和流程。然而,这些老应用系统往往没有设计或实现单点登录(SSO)功能,用户需要在不同系统之间频繁输入账号…

C语言--每日选择题--Day35

第一题 1. 有如下定义:(x y) % 2 (int) a / (int) b 的值是() int x 3; int y 2;float a 2.5; float b 3.5; A:0 B:2 C:1.5 D:1 答案及解析 D 本题是考查强制类型转换和操作符优先级 操作…

Figma安装指南:新手入门必看!

如果您想下载Figma客户端,可以直接在Figma官网Products>Downloads页面下载。 如果你不能访问Figma的官方网站,即使下载到客户端,你的网络环境也不能正常使用。 因为Figma的服务器在国外,在国内访问时经常会遇到网络不稳定的情…

py 如何在直播间插入动态图片

在直播间插入动态图片可以通过以下步骤完成: 确定图片的位置:首先,你需要确定你的图片文件在哪里。可以是本地的图片文件,也可以是网络上的图片链接。导入必要的库:在你的直播代码中,需要导入一些库来处理…

SAP 生产订单状态控制

对于生产订单状态,我们经常会对状态进行控制,比如说已领料报工的生产订单就不允许做重读主数据 或者是部分入库不允许做TECO等等 可以通过一个标准的事物代码进行对生产订单状态的一个控制 Tcode:BS22 选择你需要你控制的订单的状态编号双击…

西南科技大学模拟电子技术实验六(BJT电压串联负反馈放大电路)预习报告

一、计算/设计过程 BJT电压串联负反馈放大电路图1-1-1-1为BJT电压串联负反馈放大实验电路,若需稳定输出电压,减小从信号源所取电流,可引入电压串联负反馈闭合开关。 图1-1-1-1 理论算法公式(1)闭环电压放大倍数 (2)反馈系数 (3)输入电阻 (4)输出电阻 计算过程。开环…

51综合程序03-DS1302时钟

文章目录 DS1302时钟芯片一、DS1302时钟芯片的工作原理1. 芯片特点2. 引脚说明3. 寄存器地址4. 读数据的时序图5. 写数据的时序图 二、综合实例LCD1602显示 DS1302时钟芯片 一、DS1302时钟芯片的工作原理 1. 芯片特点 实时计算年、月、日、时、分、秒、星期,直到2…

FacetWP Hierarchy Select网站内容层次结构选择插件

点击阅读FacetWP Hierarchy Select网站内容层次结构选择插件原文 FacetWP Hierarchy Select网站内容层次结构选择插件可让您基于分层分类法创建引导下拉菜单。 FacetWP Hierarchy Select网站内容层次结构选择插件功能 通过引导式下拉菜单过滤结果,一次一个深度级…

【从零开始学习Redis | 第六篇】爆改Setnx实现分布式锁

前言: 在Java后端业务中, 如果我们开启了均衡负载模式,也就是多台服务器处理前端的请求,就会产生一个问题:多台服务器就会有多个JVM,多个JVM就会导致服务器集群下的并发问题。我们在这里提出的解决思路是把…

卷积神经网络(CNN):艺术作品识别

文章目录 一、前言一、设置GPU二、导入数据1. 导入数据2. 检查数据3. 配置数据集4. 数据可视化 三、构建模型四、编译五、训练模型六、评估模型1. Accuracy与Loss图2. 混淆矩阵3. 各项指标评估 一、前言 我的环境: 语言环境:Python3.6.5编译器&#xf…

HarmonyOS开发员,月薪过万不是梦

最近爆出消息,安卓与鸿蒙将不再兼容!这意味着华为已经搭建了完整的鸿蒙生态,不再需要依赖于安卓生态。据统计,鸿蒙生态设备已经达到了7亿台,开发者人数也达到了220万人 此外,华为对鸿蒙系统的性能和体验有…

服务器感染了.halo勒索病毒,如何确保数据文件完整恢复?

尊敬的读者: 随着数字化的快速发展,网络安全威胁也愈演愈烈。其中,.halo勒索病毒是一种带有恶意目的的恶意软件,对用户的数据构成巨大威胁。本文将深入介绍.halo勒索病毒的特征,探讨如何有效恢复被其加密的数据&#…

spring boot配置文件格式 ${}和@@

${}和都是springboot引用属性变量的方式&#xff0c;具体区别与用法&#xff1a; 1、${}常用于pom.xml&#xff0c;和 src/main/resources/application.properties等默认配置文件的属性变量引用。 语法为&#xff1a;field_name${field_value} pom.xml示例&#xff1a; <…

Kotlin学习之04

集合的变换操作 filter&#xff1a;保留满足条件的元素 map&#xff1a;集合中所有元素映射到其他元素构成新集合&#xff08;就是转换每个元素&#xff0c;然后再组成一个新的结果&#xff09; flatMap&#xff1a;集合中所有元素映射到新集合并合并这些集合得到新集合&…

语音识别从入门到精通——1-基本原理解释

文章目录 语音识别算法1. 语音识别简介1.1 **语音识别**1.1.1 自动语音识别1.1.2 应用 1.2 语音识别流程1.2.1 预处理1.2.2 语音检测和断句1.2.3 音频场景分析1.2.4 识别引擎(**语音识别的模型**)1. 传统语音识别模型2. 端到端的语音识别模型基于Transformer的ASR模型基于CNN的…