Redis实战篇笔记(最终篇)

Redis实战篇笔记(七)


文章目录

  • Redis实战篇笔记(七)
  • 前言
    • 达人探店
      • 发布和查看探店笔记
      • 点赞
      • 点赞排行榜
    • 好友关注
      • 关注和取关
      • 共同关注
      • 关注推送
      • 关注推荐的实现
  • 总结


前言

本系列文章是Redis实战篇笔记的最后一篇,那么到这里Redis实战篇的内容就要结束了,本系列文件涵盖了Redis作为缓存在实战项目中的大多数用法


达人探店

发布和查看探店笔记

这个两个功能就是普通的业务,没有用到 redis,所以我把他们合到一起了

发布探店笔记
我们点击下面的加号就可以发布一篇探店笔记
image.png
这里的上传图片,如果是一般的业务会上传到一个文件服务器,但是他这里选择上传到了我们的前端服务器
image.png
这个 IMAGE_UPLOAD_DIR 就是前端服务器放图片的地方,要改成自己所对应的位置
image.png
我们像这样就写好了一篇探店笔记,然后我们点发布,就会跳转到个人中心,并且在主页的最后也能看见我们发布的笔记
image.png
image.png
image.png

我们点击看我们刚发布的笔记,会报错,是因为我们还没有实现这个功能,我们点击查看,就可以看到前端访问的接口,接下来我们就去实现它
image.png

**这就是 查看笔记的方法 ** queryBlogById 是我们要实现的方法, querHotBlog 是代码已经写好的。由于没有涉及到 Redis 的操作,这里就不再过多解释了。

@Resourceprivate IUserService userService;@Overridepublic Result queryHotBlog(Integer current) {// 根据用户查询Page<Blog> page = this.query().orderByDesc("liked").page(new Page<>(current, SystemConstants.MAX_PAGE_SIZE));// 获取当前页数据List<Blog> records = page.getRecords();// 查询用户records.forEach(this::queryBlogUser);return Result.ok(records);}@Overridepublic Result queryBlogById(Long id) {// 1. 查询blogBlog blog = getById(id);if(blog==null){return Result.fail("笔记不存在");}// 2. 查询blog有关的用户queryBlogUser(blog);return Result.ok(blog);}private void queryBlogUser(Blog blog) {Long userId = blog.getUserId();User user = userService.getById(userId);blog.setName(user.getNickName());blog.setIcon(user.getIcon());}

实现后,效果就是这样了。
image.png

点赞

代码中实现的点赞是 连续点赞的功能,但是这样的功能是不好的,如果有人调用这个接口,一直刷赞,数据库直接就爆了,所以我们要对这个功能进行改造

改造后的需求:

  1. 同一个用户只能点赞一次,再次点击则取消点赞
  2. 如果当前用户已经点赞,则点赞按钮高亮显示(前端已实现,判断Blog类的 isLike 属性)

那我们怎样来标记用户是否点赞过? 用 Redis 的 set集合可以实现,set 集合我们已经用了好几次了,set中的元素是不能重复的,可以用来标记

    @Overridepublic Result likeBlog(Long id) {// 1.获取登录用户Long userId = UserHolder.getUser().getId();// 2.判断当前登录用户是否已经点赞Boolean isMember = stringRedisTemplate.opsForSet().isMember(BLOG_LIKED_KEY, userId.toString());// 3.如果未点赞,可以点赞if(BooleanUtil.isFalse(isMember)){// 起始这里我觉得也可以做一个异步任务,利用 Redis的高效性,去实现与用户的交互// 用异步任务来去修改数据库,感觉 Redis 和 数据库都可以这么来用// 3.1 数据库点赞数+1boolean isUpdate = update().setSql("liked=liked+1").eq("id", id).update();// 3.2 保存用户到 Redis的 set 集合if(isUpdate){stringRedisTemplate.opsForSet().add(BLOG_LIKED_KEY,userId.toString());}}else {// 4. 如果已经点赞,取消点赞// 4.1 数据库点赞数 -1boolean isUpdate = update().setSql("liked=liked-1").eq("id", id).update();// 4.1 把用户从Redis的 set 集合移除if(isUpdate){stringRedisTemplate.opsForSet().remove(BLOG_LIKED_KEY,userId.toString());}}return Result.ok();}

点赞排行榜

我们在探店笔记的详情页面,应该按照点赞的时间显示出来,比如最早点赞的 TOP5,形成点赞排行榜
但是我们刚才在实现点赞功能的时候,用的是 set 集合,但 set 集合中的元素是无序的,这就不符合我们的功能,所以我们要换一个数据结构,即能保留 set 的无序特点,又会使其中的元素有序,那就是 Redis 的 SortedSet
那接下来,我们就要去改造一下我们之前写的点赞功能

其实就是把之前用 set 集合的操作 换成 SortSet

    @Overridepublic Result likeBlog(Long id) {// 1.获取登录用户Long userId = UserHolder.getUser().getId();// 2.判断当前登录用户是否已经点赞Double score = stringRedisTemplate.opsForZSet().score(BLOG_LIKED_KEY, userId.toString());// 3.如果未点赞,可以点赞if(score==null){// 3.1 数据库点赞数+1boolean isUpdate = update().setSql("liked=liked+1").eq("id", id).update();// 3.2 保存用户到 Redis的 set 集合if(isUpdate){stringRedisTemplate.opsForZSet().add(BLOG_LIKED_KEY,userId.toString(),System.currentTimeMillis());}}else {// 4. 如果已经点赞,取消点赞// 4.1 数据库点赞数 -1boolean isUpdate = update().setSql("liked=liked-1").eq("id", id).update();// 4.1 把用户从Redis的 set 集合移除if(isUpdate){stringRedisTemplate.opsForZSet().remove(BLOG_LIKED_KEY,userId.toString());}}return Result.ok();}private void isLiked(Blog blog){// 1.获取登录用户Long userId = UserHolder.getUser().getId();// 2.判断当前登录用户是否已经点赞Double score = stringRedisTemplate.opsForZSet().score(BLOG_LIKED_KEY, userId.toString());blog.setIsLike(score!=null);}

**那接下来我们就去实现这个点赞排行榜

@Overridepublic Result queryBlogLikes(Long id) {String key= BLOG_LIKED_KEY+id;// 1. 查询 top5 的点赞用户 zrange key 0 4Set<String> top5 = stringRedisTemplate.opsForZSet().range(key, 0, 4);if(top5==null||top5.isEmpty()){return Result.ok(Collections.emptyList());}// 这里用了大量的 stream流来处理集合,不太懂 stream流的朋友可以先去学习一下stream流List<Long> ids = top5.stream().map(Long::valueOf).collect(Collectors.toList());String idStr = StrUtil.join(",", ids);// 这里的 sql,没有默认的是因为,默认的排序它会按 id 降序排列,不符合我们的需求。List<UserDTO> userDTOS = userService.query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list().stream() // 这里处理一下是脱敏.map(user -> BeanUtil.copyProperties(user, UserDTO.class)).collect(Collectors.toList());return Result.ok(userDTOS);}
// 因为未登录用户会获取 user失败,所以这里加一下,其实这样做是不好的,业务容易乱,以后未登录
// 用户要使用的地方肯定还会有,所以建议还是写在 拦截器里。private void isLiked(Blog blog){// 1.获取登录用户UserDTO user = UserHolder.getUser();if (user==null){return;}Long userId = user.getId();// 2.判断当前登录用户是否已经点赞Double score = stringRedisTemplate.opsForZSet().score(BLOG_LIKED_KEY, userId.toString());blog.setIsLike(score!=null);}

至此,达人探店的模块我们也学完了,在这个模块,我们主要去使用了 Redis 中关于 set 和 SortedSet 的使用。🤗

好友关注

关注和取关

这个功能也没有用到 Redis, 也只是简单的业务,这里也就简单的记一下
其实这也是个挺常见的功能,不跟视频自己也可以手敲出来,这里就只记录 service层的代码

 @Overridepublic Result follow(Long followUserId, Boolean isFollow) {Long userId = UserHolder.getUser().getId();// 1.判断到底是关注还是取关if(isFollow==true){Follow follow = new Follow();follow.setUserId(userId);follow.setFollowUserId(followUserId);save(follow);}else {remove(new QueryWrapper<Follow>().eq("user_id",userId).eq("follow_user_id",followUserId));}return Result.ok();}@Overridepublic Result isFollow(Long followUserId) {Long userId = UserHolder.getUser().getId();// 1.查询是否关注Integer count = query().eq("user_id", userId).eq("follow_user_id", followUserId).count();return Result.ok(count>0);}

共同关注

其实之后的课程有点为了练这个 Redis 而去开发的这个功能😢,但还是学完吧,也没有几节了
既然要实现 共同关注,那肯定要 先获取 两个用户的关注列表,然后去求交集,那在 Redis 中 set 集合是可以求交集的,所以我们这次用 set 集合来实现求共同关注的功能。在实现这个功能之前,我们先来实现下面两段代码
这两段 代码与共同关注没有什么关系,是用来完善用户的一些信息

// UserController
// 这个是用来点击头像,进入主页
@GetMapping("{id}")public Result queryUserById(@PathVariable("id") Long userId){User user = userService.getById(userId);if(user==null){return Result.ok();}UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);return Result.ok(userDTO);}
// BlogController
// 这个是进入主页后,显示这个博主的博客
@GetMapping("/of/user")public Result queryBlogByUserId(@RequestParam(value = "current",defaultValue = "1")Integer current,@RequestParam("id") Long id){Page<Blog> page = blogService.query().eq("user_id", id).page(new Page<>(current, SystemConstants.MAX_PAGE_SIZE));List<Blog> records = page.getRecords();return Result.ok(records);}

下面我们就来写共同关注的代码,首先我们要把之前写的关注稍微改一下,就是操作完数据库后,把关注列表形成一个 set 添加到 Redis 中。

@Overridepublic Result follow(Long followUserId, Boolean isFollow) {Long userId = UserHolder.getUser().getId();// 1.判断到底是关注还是取关if(isFollow==true){Follow follow = new Follow();follow.setUserId(userId);follow.setFollowUserId(followUserId);boolean save = save(follow);if(save){stringRedisTemplate.opsForSet().add("follows:"+userId,followUserId.toString());}}else {remove(new QueryWrapper<Follow>().eq("user_id",userId).eq("follow_user_id",followUserId));stringRedisTemplate.opsForSet().remove("follows:"+userId,followUserId.toString());}return Result.ok();}

然后我们来写 共同关注

@Overridepublic Result followCommons(Long id) {// 这里还是用来一些流操作的,不熟悉的朋友还是建议去看看流。// 其实这里真正要说的也就是求交集了 set 的 intersect命令Long userId = UserHolder.getUser().getId();String key="follows:"+userId;String followedKey="follows:"+id;Set<String> intersect = stringRedisTemplate.opsForSet().intersect(key, followedKey);if(intersect==null||intersect.isEmpty()) return Result.ok(Collections.emptyList());List<Long> ids = intersect.stream().map(Long::valueOf).collect(Collectors.toList());List<UserDTO> users = userService.listByIds(ids).stream().map(user -> BeanUtil.copyProperties(user, UserDTO.class)).collect(Collectors.toList());return Result.ok(users);}

其实上面两个真的没有什么太多新的东西,用到的 Redis 的部分也是比较少的,想要学 Redis 的朋友也可以跳过这两节.

关注推送

关注推送也叫 Feed 流,直译为 投喂,为用户持续的提供 “沉浸式” 的体验,通过无限下拉获取新的信息

Feed 流产品有两种常见模式:

  • TimeLine: 不做内容筛选,简单的按照内容发布时间排序,常用于好友或关注.例如朋友圈
    • 优点: 信息全面,不会缺失.并且实现也相对简单
    • 缺点: 信息噪音较多,用户不一定感兴趣,内容获取效率低
  • 智能排序: 利用智能算法屏蔽掉违规的,用户不感兴趣的内容,推送用户感兴趣的信息来吸引用户
    • 优点: 投喂用户感兴趣信息,用户粘度高,容易沉迷
    • 缺点: 如果算法不精确,可能起反作用

我们这个 个人页面,是基于关注的好友来做 Feed 流,因此采用 TIMELine 的模式,该模式的实现有三种

  1. 拉模式
  2. 推模式
  3. 推拉结合

拉模式

每个博主都会有一个发件箱,当他们发布消息的时候,都会先发到他们自己的发件箱当中,并且都带上时间戳,然后当有一个用户下拉刷新它的收件箱的时候,这时候,系统会从这个用户所关注的博主的发件箱中拉取信息,然后按时间戳排序.下面这个国就演示了这个过程,但是我们想想,它每下拉一次我们就都要给它拉取一次,并且还要排序,那这样性能是不是就不是很好,那我们接下来继续看 推模式
image.png

推模式

而推模式就与拉模式不太一样了,每个博主没有收件箱 了,而是把信息直接发给粉丝的收件箱,并且在收件箱内部排好序,这样粉丝下来刷新的时间,就直接从收件箱中取就可以了.这样就弥补了拉模式的效率问题.但是推模式同样有一个问题,就是如果有一个博主的粉丝很多,那它要给粉丝发消息就要发多份,这个数据量上来了,系统也没法承受,那么能不能把 这两种模式的优点结合起来呢,那就是接下的推拉模式了
image.png

推拉模式

在推拉模式中,我们将博主分为 大V 和普通博主,大V的粉丝数很多,通常几千万,而普通博主的粉丝数就比较少了.
我们也把粉丝分为普通粉丝和活跃粉丝.
对于 大V来说,他的粉丝数很多,所以肯定不能用推模式,所以就用拉模式.但是对于一些活跃粉丝还是用推模式,因为这些活跃粉丝经常取看他们博主的信息,所以效率要高一些,而对于哪些普通粉丝就用拉模式,因为他们对博主的关注也不是很多,所以效率吗,慢一点也就慢一点了,而对于普通博主来说,他的粉丝数目没有那么多,所以用推模式也耗费不少资源.
image.png
下面我们再来对比一下这三种模式的优缺点.
image.png
那对于我们这个系统,不会有大v,所以我们这采用推模式来实现.

关注推荐的实现

需求:

  1. 修改新增探店笔记的业务,在保存 blog 到数据库的时候,推送的收件箱
  2. 收件箱满足可以根据时间戳排序,必须用 Redis 的数据结构实现
  3. 查询收件箱时,可以实现分页查询。

我们先来修改新增博客的业务,这个业务用到了 Redis的 set结构来作为用户的收件箱,并把这个博客推送到这个博客的主人的粉丝的收件箱。

 @Overridepublic Result saveBlog(Blog blog) {// 获取登录用户UserDTO user = UserHolder.getUser();blog.setUserId(user.getId());// 保存探店博文boolean isSuccess = save(blog);if(!isSuccess){return Result.fail("新增笔记失败");}List<Follow> follows = followService.query().eq("follow_user_id", user.getId().toString()).list();for (Follow follow : follows) {//获取粉丝 idLong userId = follow.getUserId();//推送String key="feeds:"+userId;stringRedisTemplate.opsForZSet().add(key,blog.getId().toString(),System.currentTimeMillis());}// 返回idreturn Result.ok(blog.getId());}

然后我们再来实现粉丝查看自己的收件箱,展示出这个用户所关注的博主的文章
但是我们这里想一下,这里的分页还能是传统的分页吗?
我们看下面这条图,t1时,查询5条,但是 t2这是又传过来了一个数据,t3这时候又查询5条数据,从头开始查的话,会查重一个。这就不是我们想要的,那怎么解决查重,就是滚动查询
image.png
在滚动查询的时候
t1 和 t2 都是与上述一样,但是 t3时刻读取第二页,是从上回 的lastId 的下一个开始查的,这样就避免了查重,但是在 Redis 中如何实现呢,我们可以利用 SortedSet 来实现。
image.png
**SortedSet 中有一条命令是 **
ZREVRANGEBYSCORE 是用 score 来搜索
image.png
其中 max ,min是排序的范围,max是最大值,min是最小值。WITHSCORES是返回时带着分数 offset是偏移量,是从最大值的哪一个开始排序,0就是从最大值开始,1就是从最大值的下一个开始。count就是查几个。

那么我们就可以用时间戳来当分数,最新的时间戳就是最大的分数,排在第一位。第一次的时候可以拿当前时间戳,因为对于当前来说,当前时间戳是最大的,最小值我们不关心,就用 0. 第一次 offset 用0,因为第一次分数最大的我们也要。
然后往后 max 就应该是上回查询的最小分数,最小还是0,但是这时的 offset就应该是 1了,因为这次的最小分数是上一会的最小元素,我们上回已经查过了,这次不需要了。所以 offset 要用 1. 具体如下
image.png
但是如果两个元素的时间戳一样怎么办?如果这个用户关注了很多博主,这些博主可能会在同一时间发布文章,都会推送到这个用户的收件箱。我们看下面的图看一下有什么问题

我们看一下,m7和m6的分数都是 6,第二次查看的时候还是出现了 6,这是为什么,因为,我们第二次查询的时候 max 是上回的 min,上回的 min是6,而我们的第二次的 offser 是 1,也就是 从分数为 6 的下一个开始,那分数为6 的从上往下 第一个是 m7,第二个是 m6,那可不是要从 m6开始查嘛,所以我们的 offset也要改,就是上一次最小分数的个数是多少,我们下一次的 offset就是多少,还是这个我们来开,6有两个,那第二次我们的 offser 就是 2,分数为6的第一个是m7,往下移动 2位,不就刚好把 上一次我们查到的 分数为6的隔过去了嘛、
有的朋友可能这里会有的疑惑,如果我 m5 也是 6,你offset不就是 3了,不就把 m5 也隔过去了?
其实不是这样的,查重复的,我们只在上一次我们查到的里面查重复,不是对于整个 set 查。下面看效果
image.png

image.png
那思路有了,代码怎么实现呢,我们先来看接口的规范

image.png
我们在一次查询中,就要把 本次的最小时间戳和下一次要用的偏移量算出来,传给前端,前端下一次再调用这个接口的时候,就用这两个。下面是具体代码实现

 @Overridepublic Result queryBlogOfFollow(Long max, Integer offset) {//1. 获取当前用户Long userId = UserHolder.getUser().getId();//2. 查询收件箱 ZREVRANGEBYSCORE key max min LIMIT offset countString key="feeds:"+userId;//3. 解析数据:blogId,timestamp,offset// 这里的 TypedTuple 是一个元组,里面有你要查的数据,以及分数Set<ZSetOperations.TypedTuple<String>> typedTuples = stringRedisTemplate.opsForZSet().reverseRangeByScoreWithScores(key, 0, max, offset, 3);// 非空判断if(typedTuples==null||typedTuples.isEmpty()){return Result.ok();}//4. 根据id查询blogList<Long> ids=new ArrayList<>(typedTuples.size());long minTime=0;int os=1;// 接下来就是算 mintime 和 offset,其实这里我们还是用了一点点小算法,用一个 mintime// 变量来接受最小时间戳,然后每次从元组获取到时间戳,我们就赋给 mintime,这样遍历完// 后,mintime 就是最小的// 然后是 算 offset,这里我们根据 mintime,我们刚才不是说了嘛,遍历的过程中每获取一次// time ,就赋给 mintime,那么我们在赋之前,加一步,判断当前获取的这个 time 与 mintime//是否相等,相等,就让 os++,不相等就让 minTime=time,最后重置 os,到最后 os 一定是// 最小的时间戳的重复次数。// 其实else 里面 的赋值可以去掉,因为最后还会赋值。for (ZSetOperations.TypedTuple<String> typedTuple : typedTuples) {//4.1 获取博客idids.add(Long.valueOf(typedTuple.getValue()));long time = typedTuple.getScore().longValue();if(time==minTime){os++;}else {minTime=time;os=1;}minTime = time;}//5. 封装并返回String idStr = StrUtil.join(",", ids);List<Blog> blogs = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();for (Blog blog : blogs) {// 查询 blog 有关的用户queryBlogUser(blog);// 查询blog 是否被点赞isLiked(blog);}ScrollResult scrollResult = new ScrollResult();scrollResult.setList(blogs);scrollResult.setOffset(os);scrollResult.setMinTime(minTime);return Result.ok(scrollResult);}

那么今天关于好友关注这个模块就学完了,虽然前面的比较简单,但是最后一个理解起来还是有一定难度的


总结

最后的最后,还是希望Redis实战篇系列比较可以对大家的学习以及工作有一定的帮助,那我们的实战篇笔记就到这里撒花完结了,朋友们,我们高级篇再见。

我是Mayphyr,从一点点到亿点点,我们下次再见

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/196730.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

集成开发环境PyCharm的使用【侯小啾python基础领航计划 系列(三)】

集成开发环境 PyCharm 的使用【侯小啾python基础领航计划 系列(三)】 大家好,我是博主侯小啾, 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹…

从零开始实现神经网络(二)_CNN卷积神经网络

参考文章: 介绍卷积神经网络1 介绍卷积神经网络2 在过去的几年里&#xff0c;关于卷积神经网络&#xff08;CNN&#xff09;的讨论很多&#xff0c;特别是因为它们彻底改变了计算机视觉领域。在这篇文章中&#xff0c;我们将建立在神经网络的基本背景知识的基础上&#xff0c;探…

2023/12/4JAVAmysql

流程控制函数 部门不存在,这个不存在交集,所有没出现

【Docker实操】创建一个Node服务

一、安装node 请查看阿里云官网教程&#xff1a;如何快速部署Node.js项目。&#xff08;注意要在根目录操作&#xff09;apt install nodejs、apt install npm执行上面两个命名来安装 安装完成后&#xff0c;执行node -v、npm -v&#xff0c;如果出现版本&#xff0c;就是安装…

你好!斐波那契查找【JAVA】

1.有幸遇见 斐波那契查找算法&#xff0c;也称黄金分割查找算法&#xff0c;是一种基于斐波那契数列的查找算法。与二分查找类似&#xff0c;斐波那契查找也是一种有序查找算法&#xff0c;但它的查找点不是中间位置&#xff0c;而是根据斐波那契数列来确定&#xff0c;因此又称…

工程师业余生活之制作蔬菜盆景

工程师业余生活陶冶情操之制作蔬菜盆景 &#xff08;蔬 果 盆 景 裝 點 家 居&#xff09; 市場上好多蔬菜瓜果,稍用一些心思,將一些價廉的蔬果製成別致的盆景, 便能使家居充滿自然氣息&#xff0c;增添生活情趣。以下介紹幾種製作方法&#xff1a; 【番薯盆景】 (番薯又名地…

4K-Resolution Photo Exposure Correction at 125 FPS with ~8K Parameters

MSLTNet开源 | 4K分辨率125FPS8K的参数量&#xff0c;怎养才可以拒绝这样的模型呢&#xff1f; 错误的曝光照片的校正已经被广泛使用深度卷积神经网络或Transformer进行广泛修正。尽管这些方法具有令人鼓舞的表现&#xff0c;但它们通常在高分辨率照片上具有大量的参数数量和沉…

avue页面布局 api 引用

展示 index.vue <template><basic-container><avue-crud :option"option":table-loading"loading":data"data":page"page":permission"permissionList":search.sync"search":before-closebefore…

GitHub项目推荐-Deoldify

有小伙伴推荐了一个老照片上色的GitHub项目&#xff0c;看了简介&#xff0c;还不错&#xff0c;推荐给大家。 项目地址 GitHub - SpenserCai/sd-webui-deoldify: DeOldify for Stable Diffusion WebUI&#xff1a;This is an extension for StableDiffusions AUTOMATIC1111 w…

多多情报通:助力拼多多商家选品运营的数据分析工具

多多情报通&#xff08;原名多多参谋&#xff09;是一款专为拼多多商家设计的数据分析工具&#xff0c;旨在帮助商家进行选品、运营优化和提高销售业绩。通过多多情报通&#xff0c;商家可以更好地了解市场趋势、消费者需求和竞争对手状况&#xff0c;从而制定有效的运营策略。…

RH850P1X芯片学习笔记-Pin Functions

文章目录 Pin Connection Diagrams术语定义 Pin ListPort OverviewIntroductionFunctional OverviewPort CategoryOperation Mode运行模式 Port Function寄存器地址映射 Port寄存器描述Pn/JP0 — Port RegisterPPRn/JPPR0 — Port Pin Read RegisterPMn/JPM0 — Port Mode Regi…

VSCode 开发C/C++实用插件分享——koroFileHeader

相关文章 VSCode 开发C/C实用插件分享——codegeex VSCode 开发C/C实用插件分享——koroFileHeader 一、koroFileHeader二、使用步骤1.安装2.头文件注释配置3.函数注释配置 一、koroFileHeader 在有些场景下&#xff0c;我们需要在文件头添加一些作者、文件描述、时间和版权描述…

Redis主从复制实现RCE

文章目录 前置知识概念redis常用命令redis module 利用条件利用工具思路例题 [网鼎杯 2020 玄武组]SSRFMe方法一方法二 总结 前置知识 概念 背景是多台服务器要保存同一份数据&#xff0c;如何实现其一致性呢&#xff1f;数据的读写操作是否每台服务器都可以处理&#xff1f;这…

线性规划问题

线性规划问题&#xff1a; 将约束条件及目标函数都是决策变量的线性函数的规划问题称为线性规划问题 一般线性规划问题的描述&#xff1a; 为了解决这类问题&#xff0c;首先需要确定问题的决策变量:然后确定问题的目标&#xff0c;并将目标表示为决策变量的线性函数;最后找出问…

python之ddddocr快速识别

1. 安装模块 pip install ddddocr -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com2. 编写代码 import ddddocr # 导入orc模块 import logging # 导入日志 logging.getLogger().setLevel(logging.INFO) # 设置日志级别 def ComputeCode(path):try:logg…

Trello软件:从功能、使用技巧到替代软件等,一文弄懂项目管理必备工具!

Trello是什么&#xff1f; Trello是一款基于Web的可视化项目管理工具&#xff0c;它旨在提供一种灵活、易于理解和使用的任务管理系统。Trello将复杂的项目管理流程简化为直观的卡片和列表&#xff0c;使团队成员能轻松看到整个项目的状态&#xff0c;并了解自己的责任和任务。…

VPS服务器”性价比之王”系列:RackNerd

2023 黑五&#xff01;&#xff01;&#xff01;新 Ryzen 系列 洛杉矶dc02机房重新补货&#xff01; 支付方式&#xff1a;支付宝、PayPal、信用卡、数字货币 2023 黑五促销活动&#xff08;限量&#xff09; CPU内存硬盘(SSD)流量带宽价格(续费同价)购买链接1核768 MB15GB…

应急响应-挖矿病毒处理

应急响应-挖矿病毒处理 使用top​命令实时监控占用CPU资源的是哪个进程&#xff0c;结果可以看到是2725这个进程。 ​​ 再使用netstat -anltp命令查看网络连接状态&#xff0c;定位到对应的PID号后&#xff0c;就拿到了远程地址 ​​ 拿到远程IP&#xff0c;结果是VPN入口…

SQL Sever 基础知识 - 数据筛选(2)

SQL Sever 基础知识 - 四、数据筛选 第3节 NULL3.1 NULL 和三值逻辑3.2 IS NULL / IS NOT NULL 第4节 AND4.1 AND 运算符简介4.2 AND 运算符示例4.2.1 一个 AND 运算符4.2.2 多个 AND 运算符4.2.3 将 AND 运算符与其他逻辑运算符一起使用 第5节 OR5.1 OR 运算符简介5.2 OR 运算…

Python高效编程:十招实用技巧大揭秘!

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 1. 代码优化与高效数据结构 Python中使用合适的数据结构对于代码性能至关重要。例如&#xff0c;使用字典&#xff08;dict&#xff09;快速查找元素&#xff1a; # 使用字典进行快速查找 sample_dict {a: 1,…