【flink番外篇】1、flink的23种常用算子介绍及详细示例(1)- map、flatmap和filter

Flink 系列文章

1、Flink 专栏等系列综合文章链接


文章目录

  • Flink 系列文章
  • 一、Flink的23种算子说明及示例
    • 1、maven依赖
    • 2、java bean
    • 3、map
    • 4、flatmap
    • 5、Filter


本文主要介绍Flink 的3种常用的operator(map、flatmap和filter)及以具体可运行示例进行说明.
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。
本文除了maven依赖外,没有其他依赖。

本专题分为五篇,即:
【flink番外篇】1、flink的23种常用算子介绍及详细示例(1)- map、flatmap和filter
【flink番外篇】1、flink的23种常用算子介绍及详细示例(2)- keyby、reduce和Aggregations
【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等
【flink番外篇】1、flink的23种常用算子介绍及详细示例(4)- union、window join、connect、outputtag、cache、iterator、project
【flink番外篇】1、flink的23种常用算子介绍及详细示例(完整版)

一、Flink的23种算子说明及示例

1、maven依赖

下文中所有示例都是用该maven依赖,除非有特殊说明的情况。

<properties><encoding>UTF-8</encoding><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><java.version>1.8</java.version><scala.version>2.12</scala.version><flink.version>1.17.0</flink.version></properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-scala_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-scala_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-scala-bridge_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner-blink_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version></dependency><!-- 日志 --><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId><version>1.7.7</version><scope>runtime</scope></dependency><dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.17</version><scope>runtime</scope></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.2</version><scope>provided</scope></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.4</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.1.4</version></dependency></dependencies>

2、java bean

下文所依赖的User如下

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;/*** @author alanchan**/
@Data
@AllArgsConstructor
@NoArgsConstructor
public class User {private int id;private String name;private String pwd;private String email;private int age;private double balance;
}

3、map

[DataStream->DataStream]
这是最简单的转换之一,其中输入是一个数据流,输出的也是一个数据流。
在这里插入图片描述

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.datastreamapi.User;/*** @author alanchan**/
public class TestMapDemo {/*** @param args* @throws Exception*/public static void main(String[] args) throws Exception {// envStreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// source// transformationmapFunction5(env);// sink// executeenv.execute();}// 构造一个list,然后将list中数字乘以2输出,内部匿名类实现public static void mapFunction1(StreamExecutionEnvironment env) throws Exception {List<Integer> data = new ArrayList<Integer>();for (int i = 1; i <= 10; i++) {data.add(i);}DataStreamSource<Integer> source = env.fromCollection(data);SingleOutputStreamOperator<Integer> sink = source.map(new MapFunction<Integer, Integer>() {@Overridepublic Integer map(Integer inValue) throws Exception {return inValue * 2;}});sink.print();
//		9> 12
//		4> 2
//		10> 14
//		8> 10
//		13> 20
//		7> 8
//		12> 18
//		11> 16
//		5> 4
//		6> 6}// 构造一个list,然后将list中数字乘以2输出,lambda实现public static void mapFunction2(StreamExecutionEnvironment env) throws Exception {List<Integer> data = new ArrayList<Integer>();for (int i = 1; i <= 10; i++) {data.add(i);}DataStreamSource<Integer> source = env.fromCollection(data);SingleOutputStreamOperator<Integer> sink = source.map(i -> 2 * i);sink.print();
//		3> 4
//		4> 6
//		9> 16
//		7> 12
//		10> 18
//		2> 2
//		6> 10
//		5> 8
//		8> 14
//		11> 20}// 构造User数据源public static DataStreamSource<User> source(StreamExecutionEnvironment env) {DataStreamSource<User> source = env.fromCollection(Arrays.asList(new User(1, "alan1", "1", "1@1.com", 12, 1000), new User(2, "alan2", "2", "2@2.com", 19, 200),new User(3, "alan1", "3", "3@3.com", 28, 1500), new User(5, "alan1", "5", "5@5.com", 15, 500), new User(4, "alan2", "4", "4@4.com", 30, 400)));return source;}// lambda实现用户对象的balance×2和age+5功能public static SingleOutputStreamOperator<User> mapFunction3(StreamExecutionEnvironment env) throws Exception {DataStreamSource<User> source = source(env);SingleOutputStreamOperator<User> sink = source.map((MapFunction<User, User>) user -> {User user2 = user;user2.setAge(user.getAge() + 5);user2.setBalance(user.getBalance() * 2);return user2;});sink.print();
//		10> User(id=1, name=alan1, pwd=1, email=1@1.com, age=17, balance=2000.0)
//		14> User(id=4, name=alan2, pwd=4, email=4@4.com, age=35, balance=800.0)
//		11> User(id=2, name=alan2, pwd=2, email=2@2.com, age=24, balance=400.0)
//		12> User(id=3, name=alan1, pwd=3, email=3@3.com, age=33, balance=3000.0)
//		13> User(id=5, name=alan1, pwd=5, email=5@5.com, age=20, balance=1000.0)return sink;}// lambda实现balance*2和age+5后,balance》=2000和age》=20的数据过滤出来public static SingleOutputStreamOperator<User> mapFunction4(StreamExecutionEnvironment env) throws Exception {SingleOutputStreamOperator<User> sink = mapFunction3(env).filter(user -> user.getBalance() >= 2000 && user.getAge() >= 20);sink.print();
//		15> User(id=1, name=alan1, pwd=1, email=1@1.com, age=17, balance=2000.0)
//		1> User(id=3, name=alan1, pwd=3, email=3@3.com, age=33, balance=3000.0)
//		16> User(id=2, name=alan2, pwd=2, email=2@2.com, age=24, balance=400.0)
//		3> User(id=4, name=alan2, pwd=4, email=4@4.com, age=35, balance=800.0)
//		2> User(id=5, name=alan1, pwd=5, email=5@5.com, age=20, balance=1000.0)
//		1> User(id=3, name=alan1, pwd=3, email=3@3.com, age=33, balance=3000.0)return sink;}// lambda实现balance*2和age+5后,balance》=2000和age》=20的数据过滤出来并通过flatmap收集public static SingleOutputStreamOperator<User> mapFunction5(StreamExecutionEnvironment env) throws Exception {SingleOutputStreamOperator<User> sink = mapFunction4(env).flatMap((FlatMapFunction<User, User>) (user, out) -> {if (user.getBalance() >= 3000) {out.collect(user);}}).returns(User.class);sink.print();
//		8> User(id=5, name=alan1, pwd=5, email=5@5.com, age=20, balance=1000.0)
//		7> User(id=3, name=alan1, pwd=3, email=3@3.com, age=33, balance=3000.0)
//		6> User(id=2, name=alan2, pwd=2, email=2@2.com, age=24, balance=400.0)
//		9> User(id=4, name=alan2, pwd=4, email=4@4.com, age=35, balance=800.0)
//		5> User(id=1, name=alan1, pwd=1, email=1@1.com, age=17, balance=2000.0)
//		7> User(id=3, name=alan1, pwd=3, email=3@3.com, age=33, balance=3000.0)
//		7> User(id=3, name=alan1, pwd=3, email=3@3.com, age=33, balance=3000.0)return sink;}}

4、flatmap

[DataStream->DataStream]
FlatMap 采用一条记录并输出零个,一个或多个记录。将集合中的每个元素变成一个或多个元素,并返回扁平化之后的结果。
在这里插入图片描述

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** @author alanchan**/
public class TestFlatMapDemo {/*** @param args* @throws Exception*/public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();flatMapFunction3(env);env.execute();}// 构造User数据源public static DataStreamSource<String> source(StreamExecutionEnvironment env) {List<String> info = new ArrayList<>();info.add("i am alanchan");info.add("i like hadoop");info.add("i like flink");info.add("and you ?");DataStreamSource<String> dataSource = env.fromCollection(info);return dataSource;}// 将句子以空格进行分割-内部匿名类实现public static void flatMapFunction1(StreamExecutionEnvironment env) throws Exception {DataStreamSource<String> source = source(env);SingleOutputStreamOperator<String> sink = source.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {String[] splits = value.split(" ");for (String split : splits) {out.collect(split);}}});sink.print();
//		11> and
//		10> i
//		8> i
//		9> i
//		8> am
//		10> like
//		11> you
//		10> flink
//		8> alanchan
//		9> like
//		11> ?
//		9> hadoop}// lambda实现public static void flatMapFunction2(StreamExecutionEnvironment env) throws Exception {DataStreamSource<String> source = source(env);SingleOutputStreamOperator<String> sink = source.flatMap((FlatMapFunction<String, String>) (input, out) -> {String[] splits = input.split(" ");for (String split : splits) {out.collect(split);}}).returns(String.class);sink.print();
//		6> i
//		8> and
//		8> you
//		8> ?
//		5> i
//		7> i
//		5> am
//		5> alanchan
//		6> like
//		7> like
//		6> hadoop
//		7> flink}// lambda实现public static void flatMapFunction3(StreamExecutionEnvironment env) throws Exception {DataStreamSource<String> source = source(env);SingleOutputStreamOperator<String> sink = source.flatMap((String input, Collector<String> out) -> Arrays.stream(input.split(" ")).forEach(out::collect)).returns(String.class);sink.print();
//		8> i
//		11> and
//		10> i
//		9> i
//		10> like
//		11> you
//		8> am
//		11> ?
//		10> flink
//		9> like
//		9> hadoop
//		8> alanchan}}

5、Filter

DataStream → DataStream
Filter 函数根据条件判断出结果。按照指定的条件对集合中的元素进行过滤,过滤出返回true/符合条件的元素。
在这里插入图片描述

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.datastreamapi.User;/*** @author alanchan**/
public class TestFilterDemo {// 构造User数据源public static DataStreamSource<User> sourceUser(StreamExecutionEnvironment env) {DataStreamSource<User> source = env.fromCollection(Arrays.asList(new User(1, "alan1", "1", "1@1.com", 12, 1000), new User(2, "alan2", "2", "2@2.com", 19, 200),new User(3, "alan1", "3", "3@3.com", 28, 1500), new User(5, "alan1", "5", "5@5.com", 15, 500), new User(4, "alan2", "4", "4@4.com", 30, 400)));return source;}// 构造User数据源public static DataStreamSource<Integer> sourceList(StreamExecutionEnvironment env) {List<Integer> data = new ArrayList<Integer>();for (int i = 1; i <= 10; i++) {data.add(i);}DataStreamSource<Integer> source = env.fromCollection(data);return source;}// 过滤出大于5的数字,内部匿名类public static void filterFunction1(StreamExecutionEnvironment env) throws Exception {DataStream<Integer> source = sourceList(env);SingleOutputStreamOperator<Integer> sink = source.map(new MapFunction<Integer, Integer>() {public Integer map(Integer value) throws Exception {return value + 1;}}).filter(new FilterFunction<Integer>() {@Overridepublic boolean filter(Integer value) throws Exception {return value > 5;}});sink.print();
//		1> 10
//		14> 7
//		16> 9
//		13> 6
//		2> 11
//		15> 8}// lambda实现public static void filterFunction2(StreamExecutionEnvironment env) throws Exception {DataStream<Integer> source = sourceList(env);SingleOutputStreamOperator<Integer> sink = source.map(i -> i + 1).filter(value -> value > 5);sink.print();
//		12> 7
//		15> 10
//		11> 6
//		13> 8
//		14> 9
//		16> 11}// 查询user id大于3的记录public static void filterFunction3(StreamExecutionEnvironment env) throws Exception {DataStream<User> source = sourceUser(env);SingleOutputStreamOperator<User> sink = source.filter(user -> user.getId() > 3);sink.print();
//		14> User(id=5, name=alan1, pwd=5, email=5@5.com, age=15, balance=500.0)
//		15> User(id=4, name=alan2, pwd=4, email=4@4.com, age=30, balance=400.0)}/*** @param args*/public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();filterFunction3(env);env.execute();}}

本文主要介绍Flink 的3种常用的operator及以具体可运行示例进行说明。
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本专题分为五篇,即:
【flink番外篇】1、flink的23种常用算子介绍及详细示例(1)- map、flatmap和filter
【flink番外篇】1、flink的23种常用算子介绍及详细示例(2)- keyby、reduce和Aggregations
【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等
【flink番外篇】1、flink的23种常用算子介绍及详细示例(4)- union、window join、connect、outputtag、cache、iterator、project
【flink番外篇】1、flink的23种常用算子介绍及详细示例(完整版)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/195690.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql的索引详解

1.索引的分类 1.按照功能来分&#xff0c;可以分为主键索引、唯一索引、普通索引、全文索引 2.按照索引字段个数来分&#xff0c;可以分为单列索引、联合索引 3.按照物理实现方式来分&#xff0c;可以聚簇索引、非聚簇索引 2.适合添加索引的场景 1.具有唯一性约束的字段。 2…

医药行业:轻松学会超低温冰箱技能

超低温冰箱在医疗、科研和生物领域中扮演着至关重要的角色&#xff0c;用于存储和保护对温度极为敏感的样品和药品。 然而&#xff0c;由于这些冰箱内的温度波动可能导致样品的损坏&#xff0c;因此对超低温冰箱的监控变得至关重要。 客户案例 医疗研究机构 上海某医疗研究机…

YOLOv7独家原创改进:创新自研CPMS注意力,多尺度通道注意力具+多尺度深度可分离卷积空间注意力,全面升级CBAM

💡💡💡本文自研创新改进:自研CPMS, 多尺度通道注意力具+多尺度深度可分离卷积空间注意力,全面升级CBAM 1)作为注意力CPMS使用; 推荐指数:五星 CPMS | 亲测在多个数据集能够实现涨点,对标CBAM。 收录 YOLOv7原创自研 https://blog.csdn.net/m0_63774211/ca…

外包干了4年,技术退步太明显了。。。。。

先说一下自己的情况&#xff0c;本科生生&#xff0c;18年通过校招进入武汉某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年国庆&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测…

Docker容器(一)概述

一、虚拟化概述 1.1引⼊虚拟化技术的必要性 服务器只有5%的时间是在⼯作的&#xff1b;在其它时间服务器都处于“休眠”状态. 虚拟化前 每台主机⼀个操作系统; 软硬件紧密结合; 在同⼀个主机上运⾏多个应⽤程序通常会遭遇冲突; 系统的资源利⽤率低; 硬件成本⾼昂⽽且不够灵活…

金蝶云星空单据体明细权限和表单插件操作事件的先后顺序

文章目录 金蝶云星空单据体明细权限和表单插件操作事件的先后顺序顺序说明结论 金蝶云星空单据体明细权限和表单插件操作事件的先后顺序 顺序说明 先分录菜单单击事件EntryBarItemClick 再验权 后表单操作执行事件BeforeDoOperation 结论 如果是需要鉴权通过才允许操作的逻辑…

万界星空科技仓库管理wms系统

企业在管理库存时&#xff0c;尤其是生产制造企业&#xff0c;使用传统方式比如纸笔、Excel 管理库存&#xff0c;由于工具和信息化存在局限&#xff0c;导致在管理库存时出现如下问题&#xff1a; 1、通过纸笔记录出入库申请&#xff0c;人为手动计算易出错&#xff0c;数据易…

全球与中国HDPE管道市场:增长趋势、竞争格局与前景展望

快速成长的人口、快速的经济成长和工业发展增加了对可靠供水系统的需求。工业需要为制造流程、冷却系统和卫生目的提供可靠的水供应。随着国家的发展&#xff0c;它们更加重视基础设施&#xff0c;包括供水系统&#xff0c;以支持工业成长。HDPE管道广泛应用于饮用水和灌溉的配…

医院不良事件报告系统源码带鱼骨图分析

医院不良事件上报系统通过 “事前的人员知识培训管理和制度落地促进”、“事中的事件上报和跟进处理”、 以及 “事后的原因分析和工作持续优化”&#xff0c;结合预存上百套已正在使用的模板&#xff0c;帮助医院从对护理事件、药品事件、医疗器械事件、医院感染事件、输血事件…

CentOS系列:【Linux】CentOS7操作系统安装nginx实战(多种方法,超详细)

CentOS7操作系统安装nginx实战&#xff08;多种方法&#xff0c;超详细&#xff09; 一. 实验环境二. 使用yum安装nginx2.1 添加yum源2.1.1 使用官网提供的源地址&#xff08;方法一&#xff09;1. 找到官网的源2. 使用rpm -ivh 进行安装3. 安装完成之后查看源&#xff1a; 2.1…

三十七、XA模式

目录 一、XA模式原理 在XA模式中&#xff0c;一个事务通常被分为两个阶段&#xff1a; 二、Seata的XA模式 RM一阶段的工作&#xff1a; TC一阶段的工作&#xff1a; RM二阶段的工作&#xff1a; 1、优点&#xff1a; 2、缺点&#xff1a; 三、实现XA模式 1、修改yml文…

数据结构实验任务六 :基于 Dijsktra 算法的最短路径求解

本次代码为实验六:基于 Dijsktra 算法的最短路径求解实现。本实验的重点在于对于Dijsktra算法的理解。有关Dijsktra的资料可以参考有关博文&#xff1a; 图论&#xff1a;Dijkstra算法——最详细的分析&#xff0c;图文并茂&#xff0c;一次看懂&#xff01;-CSDN博客 以下附上…

Vision Transformer

Vision Transformer详解-CSDN博客 视频&#xff1a;11.1 Vision Transformer(vit)网络详解_哔哩哔哩_bilibili Vision Transformer学习笔记_linear projection of flattened patches-CSDN博客 一、embedding 层 对于标准的Transformer模块&#xff0c;要求输入的是token (向量…

win10使用copilot(尝试中)

一、 Microsoft account | Sign In or Create Your Account Today – Microsoft 一路next全部点好【1】 二、 查看当前win10的版本&#xff0c;cmd输入命令winver 三、 修改区域为美国 四、更新和安全 Reference 【1】完美&#xff5c;在 Win10 强行开启 Win11 的独有功能…

蓝桥杯每日一题2023.12.4

题目描述 竞赛中心 - 蓝桥云课 (lanqiao.cn) 题目分析 本题使用树型DP&#xff0c;蓝桥杯官网出现了一个点的错误&#xff0c;但实际答案是正确的 状态表示&#xff1a;f[u]&#xff1a;在以u为根的子树中包含u的所有联通块的权值的最大值 假设s1&#xff0c;s2,…sk 是u的…

腾讯云双十二优惠活动有哪些?详细攻略来了!

腾讯云作为全球领先的云计算服务提供商&#xff0c;一直在为各行各业的用户提供优质、高效、稳定的云计算服务。双十二即将来临&#xff0c;腾讯云也为大家准备了一系列丰富多彩的优惠活动。那么&#xff0c;这些优惠活动究竟有哪些&#xff1f;详细攻略在此&#xff0c;一起来…

jsp高校教师调课管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 高校教师调课管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysq…

洗浴按摩店服务预约管理系统会员小程序效果如何

洗浴按摩是线下服务需求度较高的行业&#xff0c;如今互联网趋势下&#xff0c;传统线下实体店面临多重经营痛点&#xff0c;需要商家转而线上管理及赋能客户消费、完善订单流程&#xff0c;多平台宣传让目标客户触达。 接下来让我们看看通过【雨科】平台搭建洗浴按摩店管理系…

22款奔驰GLE450升级香氛负离子 车载香薰功能

相信大家都知道&#xff0c;奔驰自从研发出香氛负离子系统后&#xff0c;一直都受广大奔驰车主的追捧&#xff0c;香氛负离子不仅可以散发出清香淡雅的香气外&#xff0c;还可以对车内的空气进行过滤&#xff0c;使车内的有害气味通过负离子进行过滤&#xff0c;达到车内保持清…

【C#】读取ini配置文件的内容

一、编写ini配置文件 ini文件时初始化文件&#xff0c;通常是系统配置文件所采用的存储格式。ini文件有自己的固定格式&#xff0c;是由若干个“节”&#xff08;section&#xff09;组成&#xff0c;每个节由若干个“键”&#xff08;key&#xff09;组成&#xff0c;每个key…