图像处理之hough圆形检测

hough检测原理

点击图像处理之Hough变换检测直线查看
下面直接描述检测圆形的方法

基于Hough变换的圆形检测方法

对于一个半径为 r r r,圆心为 ( a , b ) (a,b) a,b的圆,我们将其表示为:
( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 (xa)2+(yb)2=r2
此时 x = [ x , y ] T , a = [ a , b , r ] T x=[x,y]^T,a=[a,b,r]^T x=[x,y]Ta=[a,b,r]T,其参数空间为三维。显然,图像空间上的一点 ( x , y ) (x,y) x,y,在参数空间中对应着一个圆锥,如下图所示。
在这里插入图片描述
而图像空间的一个圆就对应着这一簇圆锥相交的一个点,这个特定点在参数空间的三维参数一定,就表示一定半径一定圆心坐标的图像空间的那个圆。
上述方法是经典的Hough圆检测方法的原理,它具有精度高,抗干扰能力强等优点,但由于该方法的参数空间为三维,要在三维空间上进行证据累计的话,需要的时间和空间都是庞大的,在实际应用中不适用。为加快Hough变换检测圆的速度,学者们进行了大量研究,也出现了很多改进的Hough变换检测圆的方法。如利用图像梯度信息的Hough变换,对圆的标准方程对x求导得到下式:
2 ( x − a ) + 2 ( y − b ) d y d x = 0 2(x-a)+2(y-b)\frac{dy}{dx}=0 2(xa)+2(yb)dxdy=0
从上式看出,此时的参数空间从半径 r r r,圆心 ( a , b ) (a,b) a,b三维,变成了只有圆心 ( a , b ) (a,b) a,b的二维空间,利用这种方法检测圆其计算量明显减少了。
但这种改进的Hough变换检测圆的方法其检测精度并不高,原因在于,此种方法利用了边界斜率。
从本质上讲,边界斜率其实是用曲线在某一点的弦的斜率来代替的,这种情况下,要保证不存在误差,只有在弦长为零的情况。但在数字图像中,曲线的表现形式是离散的,其在某一点处的斜率指的是此点右向n步斜率或是左向n步斜率。如果弦长过小了,斜率的量化误差就会增大。这种方法比较适用于干扰较少的完整圆形目标。
在这里插入图片描述

主要代码:

def AHTforCircles(edge,center_threhold_factor = None,score_threhold = None,min_center_dist = None,minRad = None,maxRad = None,center_axis_scale = None,radius_scale = None,halfWindow = None,max_circle_num = None):if center_threhold_factor == None:center_threhold_factor = 10.0if score_threhold == None:score_threhold = 15.0if min_center_dist == None:min_center_dist = 80.0if minRad == None:minRad = 0.0if maxRad == None:maxRad = 1e7*1.0if center_axis_scale == None:center_axis_scale = 1.0if radius_scale == None:radius_scale = 1.0if halfWindow == None:halfWindow = 2if max_circle_num == None:max_circle_num = 6min_center_dist_square = min_center_dist**2sobel_kernel_y = np.array([[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]])sobel_kernel_x = np.array([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]])edge_x = convolve(sobel_kernel_x,edge,[1,1,1,1],[1,1])edge_y = convolve(sobel_kernel_y,edge,[1,1,1,1],[1,1])center_accumulator = np.zeros((int(np.ceil(center_axis_scale*edge.shape[0])),int(np.ceil(center_axis_scale*edge.shape[1]))))k = np.array([[r for c in range(center_accumulator.shape[1])] for r in range(center_accumulator.shape[0])])l = np.array([[c for c in range(center_accumulator.shape[1])] for r in range(center_accumulator.shape[0])])minRad_square = minRad**2maxRad_square = maxRad**2points = [[],[]]edge_x_pad = np.pad(edge_x,((1,1),(1,1)),'constant')edge_y_pad = np.pad(edge_y,((1,1),(1,1)),'constant')Gaussian_filter_3 = 1.0 / 16 * np.array([(1.0, 2.0, 1.0), (2.0, 4.0, 2.0), (1.0, 2.0, 1.0)])for i in range(edge.shape[0]):for j in range(edge.shape[1]):if not edge[i,j] == 0:dx_neibor = edge_x_pad[i:i+3,j:j+3]dy_neibor = edge_y_pad[i:i+3,j:j+3]dx = (dx_neibor*Gaussian_filter_3).sum()dy = (dy_neibor*Gaussian_filter_3).sum()if not (dx == 0 and dy == 0):t1 = (k/center_axis_scale-i)t2 = (l/center_axis_scale-j)t3 = t1**2 + t2**2temp = (t3 > minRad_square)&(t3 < maxRad_square)&(np.abs(dx*t1-dy*t2) < 1e-4)center_accumulator[temp] += 1points[0].append(i)points[1].append(j)M = center_accumulator.mean()for i in range(center_accumulator.shape[0]):for j in range(center_accumulator.shape[1]):neibor = \center_accumulator[max(0, i - halfWindow + 1):min(i + halfWindow, center_accumulator.shape[0]),max(0, j - halfWindow + 1):min(j + halfWindow, center_accumulator.shape[1])]if not (center_accumulator[i,j] >= neibor).all():center_accumulator[i,j] = 0# 非极大值抑制plt.imshow(center_accumulator,cmap='gray')plt.axis('off')plt.show()center_threshold = M * center_threhold_factorpossible_centers = np.array(np.where(center_accumulator > center_threshold))  # 阈值化sort_centers = []for i in range(possible_centers.shape[1]):sort_centers.append([])sort_centers[-1].append(possible_centers[0,i])sort_centers[-1].append(possible_centers[1,i])sort_centers[-1].append(center_accumulator[sort_centers[-1][0],sort_centers[-1][1]])sort_centers.sort(key=lambda x:x[2],reverse=True)centers = [[],[],[]]points = np.array(points)for i in range(len(sort_centers)):radius_accumulator = np.zeros((int(np.ceil(radius_scale * min(maxRad, np.sqrt(edge.shape[0] ** 2 + edge.shape[1] ** 2)) + 1))),dtype=np.float32)if not len(centers[0]) < max_circle_num:breakiscenter = Truefor j in range(len(centers[0])):d1 = sort_centers[i][0]/center_axis_scale - centers[0][j]d2 = sort_centers[i][1]/center_axis_scale - centers[1][j]if d1**2 + d2**2 < min_center_dist_square:iscenter = Falsebreakif not iscenter:continuetemp = np.sqrt((points[0,:] - sort_centers[i][0] / center_axis_scale) ** 2 + (points[1,:] - sort_centers[i][1] / center_axis_scale) ** 2)temp2 = (temp > minRad) & (temp < maxRad)temp = (np.round(radius_scale * temp)).astype(np.int32)for j in range(temp.shape[0]):if temp2[j]:radius_accumulator[temp[j]] += 1for j in range(radius_accumulator.shape[0]):if j == 0 or j == 1:continueif not radius_accumulator[j] == 0:radius_accumulator[j] = radius_accumulator[j]*radius_scale/np.log(j) #radius_accumulator[j]*radius_scale/jscore_i = radius_accumulator.argmax(axis=-1)if radius_accumulator[score_i] < score_threhold:iscenter = Falseif iscenter:centers[0].append(sort_centers[i][0]/center_axis_scale)centers[1].append(sort_centers[i][1]/center_axis_scale)centers[2].append(score_i/radius_scale)centers = np.array(centers)centers = centers.astype(np.float64)return centers

代码效果:
在这里插入图片描述
在这里插入图片描述

全部代码可见本人GitHub仓库,如果代码有用,please click star and watching
hough检测之前需要canny算子检测基础的边缘,点击这里可以查看有关canny算法相关内容

如果本文对你有帮助,关注加点赞!!!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/19485.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode里安装Go插件和配置Go环境

vscode是一款跨平台、轻量级、插件多的开源IDE&#xff0c;在vscode不仅可以配置C/C、Python、R、Ruby等语言的环境&#xff0c;还可以配置Go语言的环境。这里介绍在vscode里安装Go语言的插件和配置Go语言环境&#xff0c;系统是Win10 64位。 1、下载Go安装包和配置GOROOT、GO…

一年级数学 数一数(一到十)

今天我们来学习数一数 有一些老人 眼睛可能花了 需要我们在动物园数清楚是多少个动物 然后告诉他们 可能有的小朋友 不知道某些数字怎么读 您可以打开地址 https://fanyi.baidu.com/?aldtype16047#zh/en/ 将数字 输入到 输入框内 然后点击 下面的小话筒 系统就会读出来了 小…

高忆管理:多重利好共振 外资加码布局A股

资本商场活泼信号正在继续开释&#xff0c;内外资决心取得有力提振。以北向资金为代表的外资近来表现活泼&#xff0c;近六个买卖日已连续净买入超500亿元。多家外资组织近期表态称&#xff0c;伴跟着方针力度加强&#xff0c;我国经济有望继续复苏&#xff0c;活泼看好我国权益…

2023年8月美团外卖3-18元红包优惠券天天领取活动日历及美团外卖红包领取使用

2023年8月美团外卖3-18元红包天天领取活动日历 根据上图美团外卖红包领取活动时间表以下时间可以天天领取3-18元美团外卖红包优惠券&#xff1a; 1、2023年8月18日 可领取美团外卖18元神券节红包&#xff1b; 2、2023年8月每周六、周日每天可领取12元美团外卖节红包&#xff…

【C++】类和对象-继承

0.前言 1.基本语法 继承的用处就是极大的减少代码的重复性&#xff0c;如果没有用继承&#xff0c;看看以下代码&#xff0c;你知道了。。。。 基本实现代码&#xff1a; #include <iostream> using namespace std; /******************************************/void …

万界星空/推出生产制造执行MES系统/开源MES/免费下载

免费MES系统介绍 什么是MES系统呢&#xff1f;MES系统主要功能就是解决“如何生产”的问题。通过实施MES系统&#xff0c;一站式解决您所困扰的所有生产制作流程问题。 普通的免费MES系统只提供简单的基本功能让客户体验&#xff0c;而万界星空MES系统运用低代码的形式开发&a…

【二开】JeecgBoot-vue3二次开发 前端 扩展online表单js增强等-初始化列表之后执行

【二开】JeecgBoot-vue3二次开发 前端 扩展online表单js增强等-初始化列表之后执行 二开位置 OnlineAutoList.js.initAutoList 定义方法 /*** 初始化列表之后执行* js增强* param tableColumns* returns {Promise<void>|*}*/onlineTableContext["afterInitAutoList…

Codeforces Round 855 (Div. 3) E题题解

文章目录 [ Unforgivable Curse (hard version)](https://codeforces.com/contest/1800/problem/E2)问题建模问题分析方法1分析性质1.分析操作对元素位置的影响2.分析可以使用操作的元素可以与相邻元素交换位置的作用代码 方法2通过DFS得到相互可以交换位置的字符集合代码 方法…

Spring Boot的自动配置原理

一.原理解释 Spring Boot的自动配置是Spring框架的一个重要特性&#xff0c;它旨在简化应用程序的开发和部署过程。自动配置通过基于类路径中的依赖关系和配置文件内容来预先配置Spring应用程序的各种组件和功能。这样&#xff0c;我们可以在无需显式配置大量参数的情况下&…

消息中间件应用场景介绍

提高系统性能首先考虑的是数据库的优化&#xff0c;但是数据库因为历史原因&#xff0c;横向扩展是一件非常复杂的工程&#xff0c;所有我们一般会尽量把流量都挡在数据库之前。 不管是无限的横向扩展服务器&#xff0c;还是纵向阻隔到达数据库的流量&#xff0c;都是这个思路。…

更安全,更省心丨DolphinDB 数据库权限管理系统使用指南

在数据库产品使用过程中&#xff0c;为保证数据不被窃取、不遭破坏&#xff0c;我们需要通过用户权限来限制用户对数据库、数据表、视图等功能的操作范围&#xff0c;以保证数据库安全性。为此&#xff0c;DolphinDB 提供了具备以下主要功能的权限管理系统&#xff1a; 提供用户…

STM32 DMA学习

DMA简称 DMA&#xff0c;Direct Memory Access&#xff0c;即直接存储器访问。DMA传输方式无需CPU直接控制传输&#xff0c;也没有中断处理方式那样保留现场和恢复现场的过程&#xff0c;通过硬件为RAM与I/O设备开辟一条直接传送数据的通路&#xff0c;能使CPU的效率大为提高。…

LabVIEW开发航天器动力学与控制仿真系统

LabVIEW开发航天器动力学与控制仿真系统 计算机仿真是工程设计和验证的非常有用的工具。它节省了大量的时间、金钱和精力。航天器动力学与控制仿真系统由LabVIEW程序开发&#xff0c;它是模拟航天器等动态系统的有用工具。还可轻松与硬件连接并输出真实信号。 项目采用系统工…

偷懒神器-->花样的代码生成工具

1、CRUD代码生成&#xff1a; 根据MyBatisPlus逆向工程改造而来&#xff0c;添加了showDoc文档生成&#xff0c;数据库脚本生成&#xff0c;增删改查文件生成&#xff0c;Po、Vo、Request对象生成等。普通的增删改查一般搞定。并预调了部份判断逻辑。 效果示例&#xff1a; p…

“用户登录”测试用例总结

前言&#xff1a;作为测试工程师&#xff0c;你的目标是要保证系统在各种应用场景下的功能是符合设计要求的&#xff0c;所以你需要考虑的测试用例就需要更多、更全面。鉴于面试中经常会问“”如何测试用户登录“”&#xff0c;我们利用等价类划分、边界值分析等设计一些测试用…

git的clone,上传,mirror与upstream同步

文章目录 clone日志信息的同步子树合并同步 clone clone他人项目&#xff0c;git到自己的项目 rm -rf .git .git存放原始项目的日志信息&#xff0c;这里需要添加自己的日志信息&#xff0c;需要删除重写。也可手动删除 git init 初始化文件&#xff0c;依据本地日志信息生产.…

Gradle和Maven的区别

Gradle和Maven 当涉及到构建和管理项目时&#xff0c;Gradle和Maven是两个非常流行的选项。本文将讨论Gradle和Maven之间的区别以及它们的配置信息差异。 1. Gradle和Maven的区别 1.1 构建脚本语言 Maven使用XML作为构建脚本语言&#xff0c;而Gradle使用基于Groovy的DSL&…

c 语言解析 时间字符串

#include <iostream> #include <ctime>int main(int argc, char *argv[]) {struct tm timeinfo;char cur_time[] "current time: 2021-09-06 23:50:13";// 解析时间到timeinfo中strptime(cur_time, "current time: %Y-%m-%d %H:%M:%S", &…

查看内存类型和频率 - Win系统

查看内存类型和频率 - Win系统 问题方法1&#xff08;推荐&#xff09;&#xff1a;使用命令行方法2&#xff1a;使用CPU-Z方法3&#xff1a;使用AIDA64 问题 我们在为电脑扩充内存时需要提前了解电脑内存的类型和频率&#xff0c;防止内存不兼容&#xff0c;但在设备管理器和…

java+springboot+mysql疫情物资管理系统

项目介绍&#xff1a; 使用javaspringbootmysql开发的疫情物资管理系统&#xff0c;系统包含超级管理员&#xff0c;系统管理员、员工角色&#xff0c;功能如下&#xff1a; 超级管理员&#xff1a;管理员管理&#xff1b;部门管理&#xff1b;职位管理&#xff1b;员工管理&…