llama.cpp部署通义千问Qwen-14B

llama.cpp是当前最火热的大模型开源推理框架之一,支持了非常多的LLM的量化推理,生态比较完善,是个人学习和使用的首选。最近阿里开源了通义千问大语言模型,在众多榜单上刷榜了,是当前最炙手可热的开源中文大语言模型。今天在github上看到前几天llama.cpp已经支持Qwen的推理了,但是由于是近期才开源的,网上还没有太多使用llama.cpp来推理通义千问的实例。本着学习的目的,今天就来实操一下,作为记录,也给需要的同学一些参考。由于最大的Qwen-72B太大了,下载需要较久时间,这里我们使用的是次一级的Qwen-14B的版本。

前提条件

已正确安装llama.cpp
能够访问HuggingFace

原始模型下载

通义千问模型在https://huggingface.co/Qwen/Qwen-14B-Chat/tree/main下载。
模型和相关代码配置文件
需要下载的文件包括:

模型文件 model-00001-of-00015 , … , model-00001-of-00015等
代码文件configuration_qwen.py,modeling_qwen.py,tokenization_qwen.py
配置文件config.json,tokenizer_config.json,model.safetensors.index.json

将上述文件下载到llama.cpp项目的models目录下,这里我放到了models/Qwen/14B/目录下。
模型放置的目录结构

需要魔法上网,不然国内无法顺利下载。
代码和配置都需要下载完全,不然llama.cpp转换的时候会报错。

模型格式转换

下载下来的模型是HuggingFace的格式,需要将HuggingFace的safetensors格式的模型文件转换成gguf格式才能使用llama.cpp推理。在llama.cpp项目根木目录执行转换脚本:

python convert-hf-to-gguf.py --model /workspace/Codes/llama.cpp/models/Qwen/14B

得到输出为:

Loading model: 14B
gguf: This GGUF file is for Little Endian only
Set model parameters
Set model tokenizer
gguf: Adding 151387 merge(s).
gguf: Setting special token type bos to 151643
...
...
blk.39.ffn_gate.weight, n_dims = 2, torch.bfloat16 --> float16
output_norm.weight, n_dims = 1, torch.bfloat16 --> float32
output.weight, n_dims = 2, torch.bfloat16 --> float16
Model successfully exported to '/workspace/Codes/llama.cpp/models/Qwen/14B/ggml-model-f16.gguf'

提示将模型格式转换成fp16的gguf格式即为转换成功。转换成功后,models/Qwen/14B/就会得到ggml-model-f16.gguf模型文件。

若在转换过程中报错提示缺少transformers和tiktoken等库,按提示pip install即可。

模型量化

格式转换后得到的是模型参数是fp16的,推理所需的资源还是比较多,速度相对较慢。想要进一步降低推理所需计算资源,需要对fp16的gguf模型进行量化。llama.cpp提供了多种量化方式,包括INT4,INT8量化及其各种变体。这里以INT4为例来进行量化,执行如下命令:

./quantize models/Qwen/14B/ggml-model-f16.gguf q4_0 # q4_0代表进行INT4量化

得到输出为:

ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:Device 0: NVIDIA GeForce RTX 4070, compute capability 8.9
main: build = 1601 (5a7d312)
...
...
[ 321/ 323]               blk.39.ffn_gate.weight - [ 5120, 13696,     1,     1], type =    f16, quantizing to q4_0 .. size =   133.75 MiB ->    37.62 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021 
[ 322/ 323]                   output_norm.weight - [ 5120,     1,     1,     1], type =    f32, size =    0.020 MB
[ 323/ 323]                        output.weight - [ 5120, 152064,     1,     1], type =    f16, quantizing to q6_K .. size =  1485.00 MiB ->   609.08 MiB | hist: 
llama_model_quantize_internal: model size  = 27023.93 MB
llama_model_quantize_internal: quant size  =  7794.73 MB
llama_model_quantize_internal: hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021 main: quantize time = 41580.08 ms
main:    total time = 41580.08 ms

执行完成之后,会在models/Qwen/14B/目录下生成ggml-model-Q4_0.gguf文件
ggml-model-Q4_0.gguf

部署推理量化模型

得到我们想要的INT4量化的模型后就可以部署推理了。llama.cpp项目编译生成的main可执行文件是推理的入口,可以直接在命令行运行main文件执行推理。同时,llama.cpp也提供了多个执行脚本,能够更方便进行推理。这里以examples/chat.sh为例,将chat.sh脚本内的./main的参数修改为如下,指定使用我们生成的量化模型的路径:

./main -m ./models/Qwen/14B/ggml-model-Q4_0.gguf -c 512 -b 1024 -n 256 --keep 48 \--repeat_penalty 1.0 --color -i \-r "User:" -f prompts/chat-with-bob.txt

然后在项目根目录命令行执行:

sh examples/chat.sh

回车执行后即可进入到聊天界面,现在可以和千问14B聊天了。
交互聊天

可以看出,千问的回答还是挺现实的哈哈哈。这里还有更多的聊天玩法,还可以部署成server形式,通过web界面来聊天,在这里不展开。
简单精度评测
光会聊天还不行,害得客观验证一下模型回答的质量。llama.cpp提供了perplexity可执行文件来验证模型的PPL精度,这里以wikitext语料来简单测试一下千问14B的性能(通义千问可能更偏向于中文,wikitext-2多数都是英文语料)。需要先下载解压wikitext-2到本地,这里解压到了llama.cpp/wikitext-2-raw/目录下,运行一下命令:

./perplexity -m models/Qwen/14B/ggml-model-Q4_0.gguf -f wikitext-2-raw/wiki.test.raw

在本地的4070上跑完测试大概需要26min左右,PPL为7.8242 +/- 0.05521,作为对比llama2-7B INT4量化版本的PPL大概为PPL = 7.8803 +/- 0.05373左右,千问14B并没有比llama2-7B提升太多,猜测可能是千问的训练数据英文较少的缘故还是我测试不当?希望知道的大佬指正。当然PPL只能作为一个参考,并不能全面地衡量模型的真正性能。
Qwen-14B-q4_0精度PPL
最后再增加一个INT8量化的对比结果:

Model / PPLINT4INT8
Qwen-14B7.8242 +/- 0.055217.6019 +/- 0.05281
llama7.8803 +/- 0.053737.6350 +/- 0.05166

到此,llama.cpp部署通义千问模型算是初步完成了,希望能帮助到需要的同学。后续还有很多可以做的,需要更深度的学习探索。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/194311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

go语言学习-并发编程(并发并行、线程协程、通道channel)

1、 概念 1.1 并发和并行 并发:具有处理多个任务的能力 (是一个处理器在处理任务),cpu处理不同的任务会有时间错位,比如有A B 两个任务,某一时间段内在处理A任务,这时A任务需要停止运行一段时间,那么会切换到处理B任…

微服务的应用架构

架构描述的是在更高层次将应用拆分为子系统或模块的方法,以及这些子系统之间的交互关系。在一个基于微服务架构构建的应用中,每个服务都需要有自己的架构。 事实上,单体应用在复杂度较低时,它的生产效率是要高于微服务的。只有在…

React18 入门与进阶

React18 入门与进阶 前言一、核心概念与类组件使用1、虚拟DOM与新的渲染写法2、JSX 与 JSX 的使用3、类组件和函数组件4、类组件与类组件通信5、props详解与注意事项6、类组件中事件的使用7、类组件响应式数据实现与原理8、PureComponent 与 shouldComponentUpdate9、immutable…

Java数据结构之《构造哈夫曼树》题目

一、前言: 这是怀化学院的:Java数据结构中的一道难度中等(偏难理解)的一道编程题(此方法为博主自己研究,问题基本解决,若有bug欢迎下方评论提出意见,我会第一时间改进代码,谢谢!) 后面其他编程题…

Difference between getc(), getchar(), and gets()

getc(): 从输入中只能读单个字符 getchar()&#xff1a;从标准输入流中输入都单个字符。 两者基本等同&#xff0c;唯一不一样的是getc()是任何输入流&#xff0c;而getchar()是标准输入流。 gets:可以读入含有空格的字符串 // Example for getc() in C #include <stdio.h…

perl脚本批量处理代码中的中文注释乱码的问题

代码中统一使用utf-8编码是最好的&#xff0c;但是有一些多人合作的项目或者一些历史遗留代码&#xff0c;常见一些中文注释乱码的问题。这里以一个开源项目evpp为例子 evpp。以项目中的一个commit id为例&#xff1a; 477033f938fd47dfecde43c82257cd286d9fa38e &#xff0c; …

算法设计与实现--动态规划篇

什么是动态规划算法 动态规划算法是一种求解复杂问题的方法&#xff0c;通过将原问题分解为相对简单的子问题来求解。其基本思想是将待求解的问题分解为若干个子问题&#xff08;阶段&#xff09;&#xff0c;按顺序求解子阶段&#xff0c;前一子问题的解&#xff0c;为后一子…

市面上的AR眼镜:优缺点分析

AR眼镜是近年来备受关注的科技产品之一。它通过将虚拟信息叠加到现实世界中&#xff0c;为用户提供全新的视觉体验。目前&#xff0c;市面上的AR眼镜主要分为两类&#xff1a;消费级AR眼镜和企业级AR眼镜。 消费级AR眼镜 消费级AR眼镜的特点是轻便、时尚、易于佩戴&#xff0…

面部动作在情绪识别中的作用(nature reviews psychology2023)

文章目录 摘要静态情绪识别动态情感识别时空信息独特的时间信息 动态表情识别的机制动态信息为什么重要什么时候动态信息起作用为什么动态信息很重要 多模态表情识别启发 摘要 过去大多数关于情绪识别的研究都使用了摆拍的表情照片&#xff0c;旨在描绘情绪表现的峰值。虽然这…

正则表达式从放弃到入门(2):grep命令详解

正则表达式从放弃到入门&#xff08;2&#xff09;&#xff1a;grep命令详解 总结 本博文转载自 这是一篇”正则表达式”扫盲贴&#xff0c;如果你还不理解什么是正则表达式&#xff0c;看这篇文章就对了。 如果你是一个新手&#xff0c;请从头阅读这篇文章&#xff0c;如果你…

Mysql窗口函数

1 什么是窗口函数 MySQL从8.0开始支持窗口函数&#xff0c;有的也叫分析函数&#xff08;处理相对复杂的报表统计分析场景&#xff09;&#xff0c;这个功能在大多商业数据库和部分开源数据库中早已支持。 窗口函数&#xff1a;窗口、函数&#xff08;应用在窗口内的函数&…

P-Tuning v2论文概述

P-Tuning v2论文概述 P-Tuning v2论文概述前言微调的限制性P-Tuning的缺陷P-Tuning v2 摘要论文十问NLU任务优化点实验数据集预训练模型实验结果消融实验 结论 P-Tuning v2论文概述 前言 微调的限制性 微调&#xff08;fine-tuning&#xff09;是一种在预训练模型基础上进行目…

中国人工智能

随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;作为一项前沿技术在各个领域展现出了强大的潜力。本文将探讨中国人工智能的历史、现状&#xff0c;并展望其未来发展。 人工智能的起源与历史 人工智能的概念最早诞生于1956年的美国达特茅斯学院的夏季研讨会…

【数据库】数据库元素的层次,树形结构的下的多粒度加锁,以及幻象的正确处理

数据库元素的层次 ​专栏内容&#xff1a; 手写数据库toadb 本专栏主要介绍如何从零开发&#xff0c;开发的步骤&#xff0c;以及开发过程中的涉及的原理&#xff0c;遇到的问题等&#xff0c;让大家能跟上并且可以一起开发&#xff0c;让每个需要的人成为参与者。 本专栏会定期…

(学习笔记)Xposed模块编写(一)

前提&#xff1a;需要已经安装Xposed Installer 1. 新建一个AS项目 并把MainActvity和activity_main.xml这两个文件删掉&#xff0c;然后在AndriodManifest.xml中去掉这个Activity的声明 2. 在settings.gralde文件中加上阿里云的仓库地址&#xff0c;否则Xposed依赖无法下载 m…

【llm使用】ChatGLM3-6B Transformers部署调用

文章目录 环境准备模型下载代码准备部署 说明&#xff1a;本文转自国内开源组织datawhale的repo&#xff1a; self-llm 环境准备 在autodl平台中租一个3090等24G显存的显卡机器&#xff0c;如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8 接下来打…

windows 系统读取 Linux Ext 分区硬盘

windows 系统读取 Linux Ext 分区硬盘 起因是需要处理一些在硬盘中的数据&#xff0c;硬盘插到我的电脑上后无法读盘&#xff0c;在 Windows 存储管理器中查看显示未分配&#xff0c;需要格式化&#xff0c;但是在 Ubuntu 系统的电脑中可以正常识别&#xff0c;试验了几次后发…

.NET8构建统计Extreme Optimization Numerical Libraries

为 .NET 8 构建统计应用程序 Extreme Optimization Numerical Libraries for .NET V8.1.22 添加了对 .NET 8 的支持&#xff0c;使您可以使用最新版本的 Microsoft 平台。 Extreme Optimization Numerical Libraries for .NET 是通用数学和统计类的集合&#xff0c;为技术和统计…

【Linux】第二十六站:软硬链接

文章目录 一、软链接二、硬链接三、ln命令四、该如何理解硬链接&#xff1f;五、如何理解软链接六、为什么要用软硬链接1.软链接的应用场景2.硬链接的应用场景 一、软链接 如下所示&#xff0c;我们创建一个文件以后&#xff0c;然后执行下面的指令 ln -s file.txt soft-link…

C++模拟实现unordered_map和unordered_set

目录 1.了解哈希表 1.哈希表 1.他的实现原理就是&#xff1a; ​编辑 2.写单个数据的类型&#xff08;这边先模拟map的kv类型&#xff0c;后面会再一起改&#xff0c;这边先一步步的先简单实现他&#xff09; 3.封装整个类&#xff1a; 4.哈希表中存储string 2.哈…