[GPT-1]论文实现:Improving Language Understanding by Generative Pre-Training

Efficient Graph-Based Image Segmentation

    • 一、完整代码
    • 二、论文解读
      • 2.1 GPT架构
      • 2.2 GPT的训练方式
        • Unsupervised pre_training
        • Supervised fine_training
    • 三、过程实现
      • 3.1 导包
      • 3.2 数据处理
      • 3.3 模型构建
      • 3.4 模型配置
    • 四、整体总结

论文:Improving Language Understanding by Generative Pre-Training
作者:Alec Radford,Karthik Narasimhan,Tim Salimans,Ilya Sutskever
时间:2018

一、完整代码

这里我们使用tensorflow代码进行实现

# 完整代码在这里
import tensorflow as tf
import keras_nlp
import jsondef get_merges():with open('./data/GPT_merges.txt') as f:merges = f.read().split('\n')return mergesmerges = get_merges()
vocabulary = json.load(open('./data/GPT_vocab.json'))tokenizer = keras_nlp.tokenizers.BytePairTokenizer(vocabulary=vocabulary,merges=merges
)pad = tokenizer.vocabulary_size()
start = tokenizer.vocabulary_size() + 1
end = tokenizer.vocabulary_size() + 2corpus = open('./data/shakespeare.txt').read()
data = tokenizer(corpus)
dataset = tf.data.Dataset.from_tensor_slices(data)
dataset = dataset.batch(63, drop_remainder=True)
def process_data(x):x = tf.concat([tf.constant(start)[tf.newaxis], x, tf.constant(end)[tf.newaxis]], axis=-1)return x[:-1], x[1:]dataset = dataset.map(process_data).batch(16)inputs, outputs = dataset.take(1).get_single_element()class GPT(tf.keras.Model):def __init__(self, vocabulary_size, sequence_length, embedding_dim, num_layers, intermediate_dim, num_heads, dropout=0.1):super().__init__()self.embedding = keras_nlp.layers.TokenAndPositionEmbedding(vocabulary_size=vocabulary_size,sequence_length=sequence_length,embedding_dim=embedding_dim,)self.lst = [keras_nlp.layers.TransformerDecoder(intermediate_dim=intermediate_dim,num_heads=num_heads,dropout=dropout,) for _ in range(num_layers)]self.dense = tf.keras.layers.Dense(vocabulary_size, activation='softmax')def call(self, x):decoder_padding_mask = x!= 0 output = self.embedding(x)for item in self.lst:output = item(output, decoder_padding_mask=decoder_padding_mask)output = self.dense(output)return outputvocabulary_size = tokenizer.vocabulary_size() + 3
sequence_length= 64
embedding_dim=512
num_layers=12
intermediate_dim=1024 
num_heads=8gpt = GPT(vocabulary_size, sequence_length, embedding_dim, num_layers, intermediate_dim, num_heads)gpt(inputs)
gpt.summary()def masked_loss(label, pred):mask = label != padloss_object = tf.keras.losses.SparseCategoricalCrossentropy(reduction='none')loss = loss_object(label, pred)mask = tf.cast(mask, dtype=loss.dtype)loss *= maskloss = tf.reduce_sum(loss)/tf.reduce_sum(mask)return lossdef masked_accuracy(label, pred):pred = tf.argmax(pred, axis=2)label = tf.cast(label, pred.dtype)match = label == predmask = label != padmatch = match & maskmatch = tf.cast(match, dtype=tf.float32)mask = tf.cast(mask, dtype=tf.float32)return tf.reduce_sum(match)/tf.reduce_sum(mask)gpt.compile(loss=masked_loss,optimizer='adam',metrics=[masked_accuracy]
)gpt.fit(dataset, epochs=3)

二、论文解读

GPT全称为Generative Pre-Training,即生成式的预训练模型;

2.1 GPT架构

其模型架构非常简单,就是Transformerdecoder修正后的叠加,因为这是文本生成任务,并没有类似于seq2seq翻译模型的对应句子,GPT的处理方式是直接把Transformer中的decoder中的CrossAtention直接删除;

如图所示:蓝色方框部分为Transformerdecoder层,其中红色方框部分为被删除的多头注意力层;

得到的模型如下:

是不是特别简单;

2.2 GPT的训练方式

首先要声明的是GPT采用的是semi-supervised即半监督学习方法,其本质是一个两阶段的训练过程,第一阶段是无监督学习,就是单纯的利用Transformerdecoder来做预测下一个词的任务;第二阶段是有监督学习,利用带标签的语料信息对模型进行训练;

接下来对这两个过程进行详细的分析;

Unsupervised pre_training

原文如图所示:

其根本目的是最大化语言模型的极大似然估计,其本质就是一个链式法则取对数;

L 1 ( u ) = l o g ( P ( u i , u i − 1 , … , u 1 ) ) P ( u i , u i − 1 , … , u 1 ) = P ( u 1 ) ⋅ P ( u 2 ∣ u 1 ) ⋅ P ( u 3 ∣ u 2 , u 1 ) ⋅ ⋅ ⋅ P ( u i ∣ u i − 1 , … , u 1 ) \begin{aligned} & L_1(u) = log(P(u_i,u_{i-1},\dots,u_1)) \\ \\ & P(u_i,u_{i-1},\dots,u_1) = P(u_1)·P(u_2|u_1)·P(u_3|u_2,u_1)···P(u_i|u_{i-1},\dots,u_1) \end{aligned} L1(u)=log(P(ui,ui1,,u1))P(ui,ui1,,u1)=P(u1)P(u2u1)P(u3u2,u1)⋅⋅⋅P(uiui1,,u1)

而下面计算 P P P 的过程,就是利用 mask 的机制来制造类似于RNN的过程;

如果对注意力机制不理解的,可以去看一下Attention Is All You Need这篇论文,我也在其他博客中简单介绍了一下;

Supervised fine_training

原文如图所示:

unsupervised pre_training不同的是,其去掉了最后一层的 W e W_e We换成了一个新的参数 W y W_y Wy,利用新的参数去预测新的标签;这里我的理解是这样的,在unsupervised pre_training中,我们相当于在大炮不停调整弹药量,大炮的对准方向 W e W_e We也在不停的向下一个单词调整;当弹药合理时,方向正确时,我们调整大炮方向去攻打supervised fine_tuning

这里的目标函数进行了一次正则化处理,避免一味的调整方向而忽略了弹药量;

L 3 ( C ) = L 2 ( C ) + λ L 1 ( C ) L_3(C) = L_2(C) + \lambda L_1(C) L3(C)=L2(C)+λL1(C)

至此,模型的训练就结束了;

三、过程实现

3.1 导包

这里使用tensorflowkeras_nlpjson三个包进行过程实现;

import tensorflow as tf
import keras_nlp
import json

3.2 数据处理

第一部分是无监督训练,我们需要导入一段长文本构建数据集进行训练即可,这里我们使用莎士比亚的作品 storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt;
第二部分是有监督训练,我们可以使用CoLA语料进行文本分类,CoLA语料来自GLUE Benchmark中的The Corpus of Linguistic Acceptability

def get_merges():with open('./data/GPT_merges.txt') as f:merges = f.read().split('\n')return mergesmerges = get_merges()
vocabulary = json.load(open('./data/GPT_vocab.json'))tokenizer = keras_nlp.tokenizers.BytePairTokenizer(vocabulary=vocabulary,merges=merges
)pad = tokenizer.vocabulary_size()
start = tokenizer.vocabulary_size() + 1
end = tokenizer.vocabulary_size() + 2corpus = open('./data/shakespeare.txt').read()
data = tokenizer(corpus)
dataset = tf.data.Dataset.from_tensor_slices(data)
dataset = dataset.batch(63, drop_remainder=True)
def process_data(x):x = tf.concat([tf.constant(start)[tf.newaxis], x, tf.constant(end)[tf.newaxis]], axis=-1)return x[:-1], x[1:]dataset = dataset.map(process_data).batch(16)inputs, outputs = dataset.take(1).get_single_element()
# inputs
# <tf.Tensor: shape=(16, 64), dtype=int32, numpy=
# array([[50258,  5962,   220, ..., 14813,   220,  1462],
#        [50258,   220, 44769, ...,   220,   732,   220],
#        [50258, 16275,   470, ...,   220,  1616,   220],
#        ...,
#        [50258,   220,  1350, ...,   220, 19205,   198],
#        [50258,   271,   220, ...,    54, 18906,   220],
#        [50258, 10418,   268, ...,    40,  2937,    25]])>

3.3 模型构建

在这里构建模型:

class GPT(tf.keras.Model):def __init__(self, vocabulary_size, sequence_length, embedding_dim, num_layers, intermediate_dim, num_heads, dropout=0.1):super().__init__()self.embedding = keras_nlp.layers.TokenAndPositionEmbedding(vocabulary_size=vocabulary_size,sequence_length=sequence_length,embedding_dim=embedding_dim,)self.lst = [keras_nlp.layers.TransformerDecoder(intermediate_dim=intermediate_dim,num_heads=num_heads,dropout=dropout,) for _ in range(num_layers)]self.dense = tf.keras.layers.Dense(vocabulary_size, activation='softmax')def call(self, x):decoder_padding_mask = x!= 0 output = self.embedding(x)for item in self.lst:output = item(output, decoder_padding_mask=decoder_padding_mask)output = self.dense(output)return outputvocabulary_size = tokenizer.vocabulary_size() + 3
sequence_length= 64
embedding_dim=512
num_layers=12
intermediate_dim=1024 
num_heads=8gpt = GPT(vocabulary_size, sequence_length, embedding_dim, num_layers, intermediate_dim, num_heads)gpt(inputs)
gpt.summary()

构建模型结构如下:

3.4 模型配置

模型配置如下:

def masked_loss(label, pred):mask = label != padloss_object = tf.keras.losses.SparseCategoricalCrossentropy(reduction='none')loss = loss_object(label, pred)mask = tf.cast(mask, dtype=loss.dtype)loss *= maskloss = tf.reduce_sum(loss)/tf.reduce_sum(mask)return lossdef masked_accuracy(label, pred):pred = tf.argmax(pred, axis=2)label = tf.cast(label, pred.dtype)match = label == predmask = label != padmatch = match & maskmatch = tf.cast(match, dtype=tf.float32)mask = tf.cast(mask, dtype=tf.float32)return tf.reduce_sum(match)/tf.reduce_sum(mask)gpt.compile(loss=masked_loss,optimizer='adam',metrics=[masked_accuracy]
)gpt.fit(dataset, epochs=3)

训练过程不知道为什么masked_accuracy一直不变,需要分析;

四、整体总结

模型结构很简单,但是在实现过程中出现了和Bert一样的问题;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/193245.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Gossip 协议

Gossip 协议 背景 在分布式系统中&#xff0c;不同的节点进行数据/信息共享是一个基本的需求。 一种比较简单粗暴的方法就是 集中式发散消息&#xff0c;简单来说就是一个主节点同时共享最新信息给其他所有节点&#xff0c;比较适合中心化系统。这种方法的缺陷也很明显&…

Hdoop学习笔记(HDP)-Part.20 安装Flume

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

ubuntu下快速搭建docker环境训练yolov5数据集

参考文档 yolov5-github yolov5-github-训练文档 csdn训练博客 一、配置环境 1.1 安装依赖包 前往清华源官方地址 选择适合自己的版本替换自己的源 # 备份源文件 sudo cp /etc/apt/sources.list /etc/apt/sources.list_bak # 修改源文件 # 更新 sudo apt update &&a…

LinuxBasicsForHackers笔记 --常用Linux命令

在终端中修改用户密码命令&#xff1a;passwd Linux的文件系统是逻辑文件系统。 Linux基本命令 pwd – print working directory. 返回你当前所在目录结构中的位置。 whoami – 查看您当前登录的用户身份。 cd – change directory. 从终端更改目录。 cd / – 移动到根目录…

数据结构与算法(Java) -单调队列单调栈题单

单调队列&#xff08;灵神笔记&#xff09; 239 滑动窗口最大值 239. 滑动窗口最大值 - 力扣&#xff08;LeetCode&#xff09; 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗…

Skywalking接入实际应用做日志跟踪

Skywalking客户端挂载 从官网下载skywalking-agent客户端&#xff0c;并挂在到应用服务器指定目录 挂载到应用主机中,好处是解决打包应用镜像的时候&#xff0c;镜像过大&#xff0c;部署成本过高。 docker-compose部署应用,并接入skywalking服务,这里以gateway为例 versio…

Webgis学习总结

前言&#xff1a; 作者跟随视频学习了webgis内容进行如下学习复习总结 参考&#xff1a;新中地学习笔记 WebGIS第一课&#xff1a;测试高德API并通过&#xff1a; 注册申请高德API成为开发者&#xff0c;创建自己的项目和key进行项目初始化&#xff0c;可以使用JS API官方文…

26. 深度学习进阶 - 深度学习的优化方法

Hi, 你好。我是茶桁。 上一节课中我们预告了&#xff0c;本节课是一个难点&#xff0c;同时也是一个重点&#xff0c;大家要理解清楚。 我们在做机器学习的时候&#xff0c;会用不同的优化方法。 SGD 上图中左边就是Batch Gradient Descent&#xff0c;中间是Mini-Batch Gra…

【Linux】第二十五站:深入理解文件系统

文章目录 一、前言二、认识硬件----磁盘1.基本介绍2.磁盘的存储构成3.磁盘的逻辑结构4.回归到硬件 三、文件系统1.划分2.Block group(1)Data blocks(2)inode Table(3)Block Bitmap(4)inode Bitmap(5)Group Descriptor Table(GDT)(6)Super Block 3.总结4.一些其他问题5.如何理解…

untiy webgl常见问题与操作

文章目录 1 untiy和网页相互通信2 打开新页面&#xff08;同标签页和新标签页&#xff09;3 获取网页的URL4 解析Url内的参数5 后处理与色彩空间问题 1 untiy和网页相互通信 看这个文章 2 打开新页面&#xff08;同标签页和新标签页&#xff09; 先看本文untiy和网页相互通信…

翻译: GPT4等大型语言模型的原理解析和未来预测慢思考和模型自我迭代和LLM安全

YouTube: Intro to Large Language Models - YouTube 1. Large Language Model LLM 大家好&#xff0c;最近我做了一个关于大型语言模型的 30 分钟演讲&#xff0c;有点像介绍性演讲&#xff0c;不幸的是&#xff0c;那个演讲没有被录制下来&#xff0c;但很多人在演讲结束后…

基于JNI实现调用C++ SDK

基于JNI实现调用C SDK 背景分析解决实践 背景 上篇文章总结了几种Java项目调用C/C SDK项目方法&#xff0c;在逐一实践、踩坑后&#xff0c;最终还是敲定采用 JNI 方式进行实现。在文章开始的过程&#xff0c;会先大概讲讲笔者遇到的情况&#xff0c;因为封装方式需要根据实际…

MQTT客户端、代理(broker)和连接建立

在前篇文章&#xff08;http://t.csdnimg.cn/IamPz&#xff09;中&#xff0c;介绍了发布/订阅架构和MQTT如何据此交换信息&#xff0c;其中的关键概念是&#xff1a; 发布/订阅架构触耦了负责发布信息的客户端&#xff08;发布者&#xff09;和负责接收信息的客户端&#xff…

[c]求逆序数

#include<stdio.h> int main() {int n,i,count;scanf("%d",&n);int arr[n];count0;for(i0;i<n-1;i){scanf("%d",&arr[i]);}for(int j0;j<n-2;j)//注意是小于等于n-2&#xff0c;因为倒数第一个元素后面没有数了&#xff0c;不需要比较…

CSC173 Boolean Logic and Boolean Circuits

We have provided code for a simple Boolean circuit simulator written i n C

韵达速递查询,韵达速递单号查询,对需要的单号进行备注

批量查询韵达速递单号的物流信息&#xff0c;对需要的单号进行备注。 所需工具&#xff1a; 一个【快递批量查询高手】软件 韵达速递单号若干 操作步骤&#xff1a; 步骤1&#xff1a;运行【快递批量查询高手】软件&#xff0c;并登录 步骤2&#xff1a;点击主界面左上角的“…

基于SpringBoot + vue的在线视频教育平台

qq&#xff08;2829419543&#xff09;获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;springboot 前端&#xff1a;采用vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xf…

王炸cpu-龙芯3A6000

国产 CPU 性能媲美 Intel 酷睿这事儿&#xff0c;可能真的已经实现了。 没错&#xff0c;那颗有着多次爆料拉满大家期待值的龙芯 3A6000&#xff0c;终于正式发布。 就在今天上午&#xff0c;龙芯中科在 2023 年龙芯产品发布暨用户大会上正式带来了这颗 CPU。 整场发布会 PPT …

【选择题】校招笔试选择题第一辑

题目 以下程序的运行结果是&#xff08; &#xff09; #include <stdio.h> int main(void) {printf("%s , %5.3s\n", "computer", "computer");return 0; }A. computer , puter B. computer , com C. computer , computer D. computer…

半导体封装之倒装封装 (Flip Chip)

倒装封装 &#xff08;Flipchip&#xff09;是相对于引线键合(Wire Bonding)来说的&#xff0c;之所以叫做倒装&#xff0c;是因为flip chip是正面朝下放置。倒装芯片技术是通过芯片上的凸点直接将元器件朝下互连到基板、载体或者电路板上。引线键合的连接方式是将芯片的正面朝…