golang Pool实战与底层实现

使用的go版本为 go1.21.2

首先我们写一个简单的Pool的使用代码

package mainimport "sync"var bytePool = sync.Pool{New: func() interface{} {b := make([]byte, 1024)return &b},
}func main() {for j := 0; j < 10; j++ {obj := bytePool.Get().(*[]byte) // 获取一个[]byte_ = objbytePool.Put(obj) // 用完再给放回去}
}

pool对象池的作用

  1. 减少内存分配: 通过池,可以减少对内存的频繁分配和释放,提高程序的内存利用率。
  2. 避免垃圾回收压力: 对象池中的对象在被使用后不会立即被释放,而是放回到池中等待复用。这有助于减轻垃圾回收的压力,因为对象可以在多次使用后才被真正释放。
  3. 提高性能: 复用对象可以避免不必要的对象创建和销毁开销,从而提高程序的性能。
    从demo上看好像没啥卵用,我们来进行一些压力测试
package mainimport ("sync""testing"
)var bytePool = sync.Pool{New: func() interface{} {b := make([]byte, 1024)return &b},
}func BenchmarkByteMake(b *testing.B) {b.ReportAllocs()b.ResetTimer()for i := 0; i < b.N; i++ {for j := 0; j < 10000; j++ {obj := make([]byte, 1024)_ = obj}}
}func BenchmarkBytePool(b *testing.B) {b.ReportAllocs()b.ResetTimer()for i := 0; i < b.N; i++ {for j := 0; j < 10000; j++ {obj := bytePool.Get().(*[]byte) // 获取一个1024长度的[]byte_ = objbytePool.Put(obj) // 用完再给放回去}}
}

看一下压测效果

可以看到执行效率高了好多倍

项目中没实际用到过,不过我们可以翻一下开源项目中是怎么用的

redis-v9 

 

Pool结构体

比较复杂有点套娃的意思

//代码位于 GOROOT/src/sync/pool.go L:49
type Pool struct {//防止Pool被复制, 君子协议,编译可以通过,某些编辑器会报waring//静态检测 go vet会出错//有兴趣可以看一下这里 https://github.com/golang/go/issues/8005#issuecomment-190753527noCopy noCopylocal     unsafe.Pointer // 本地池,对应类型[P]poolLocal P指的是 GMP中的P.ID字段localSize uintptr        // 本地池大小victim     unsafe.Pointer // 上一个周期的本地池victimSize uintptr        // 上一个周期的本地池大小New func() any // 创建对象的方法,这个需要我们自己实现
}type poolLocal struct { //本地池poolLocalInternal// 用128取模,确保结构体占据整数个缓存行,从而防止伪共享.pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
}type poolLocalInternal struct {private interface{} // 本地P的私有字段shared  poolChain   // 双端链表, 任何P都可以进行popTail
}//代码位于 GOROOT/src/sync/poolqueue.go L:194
type poolChain struct { // 双向队列//头部head *poolChainElt//尾部tail *poolChainElt
}type poolChainElt struct { //环状队列poolDequeue // next 由生产者原子性地写入,并由消费者原子性地读取, 从非nil转换为nil// prev 由消费者原子性地写入,并由生产者原子性地读取, 从非nil转换为nilnext, prev *poolChainElt
}//代码位于 GOROOT/src/sync/poolqueue.go L:19
type poolDequeue struct {//一个字段两个含义,高32位为头,低32位为尾部headTail uint64//环形缓存//vals[i].typ 为nil 说明该槽位为空vals []eface
}type eface struct { //类型与值typ, val unsafe.Pointer
}

Get函数

//代码位于 GOROOT/src/sync/pool.go L:127
func (p *Pool) Get() any {if race.Enabled { // 使用竞态检查race.Disable() //竞态检查 禁用}l, pid := p.pin() //获取当前P的ID 与 poolLocal 详细见下方x := l.private //看看私有属性是否存在对象,如果存在就可以直接返回l.private = nilif x == nil { ////优先从链表的头部获取,x, _ = l.shared.popHead()if x == nil {// 慢读取路径x = p.getSlow(pid)}}runtime_procUnpin() //取消 P 的禁止抢占if race.Enabled { // 使用竞态检查race.Enable() //竞态检查 启用if x != nil {race.Acquire(poolRaceAddr(x))}}if x == nil && p.New != nil { //调度new方法重新生成一个对象x = p.New()}return x
}
pin函数
 
//代码位于 GOROOT/src/sync/pool.go L:127
func (p *Pool) pin() (*poolLocal, int) {//获取P的idpid := runtime_procPin()// 原子操作获取本地池大小// 本地池s := runtime_LoadAcquintptr(&p.localSize) // load-acquirel := p.local                              // load-consumeif uintptr(pid) < s { //如果当前P.id 没有在local中越界,直接去获取值return indexLocal(l, pid), pid}return p.pinSlow() //慢获取
}func (p *Pool) pinSlow() (*poolLocal, int) {//取消P的禁止抢占runtime_procUnpin()allPoolsMu.Lock() //加锁defer allPoolsMu.Unlock()pid := runtime_procPin() //获取P的id//获取本地池的大小与本地池s := p.localSizel := p.localif uintptr(pid) < s { //如果当前P.id 没有在local中越界,直接去获取值return indexLocal(l, pid), pid}if p.local == nil { //如果local为空,将他加入到allPools中allPools = append(allPools, p)}// GOMAXPROCS在GC之间发送了变化,重新分配p.load与p.localSizesize := runtime.GOMAXPROCS(0)local := make([]poolLocal, size)atomic.StorePointer(&p.local, unsafe.Pointer(&local[0])) // store-releaseruntime_StoreReluintptr(&p.localSize, uintptr(size))     // store-releasereturn &local[pid], pid
}
getSlow函数
//代码位于 GOROOT/src/sync/pool.go L:156
func (p *Pool) getSlow(pid int) any {// 原子获取本地池大小// 本地池size := runtime_LoadAcquintptr(&p.localSize) // load-acquirelocals := p.local                            // load-consume// 尝试从别的P poolLocal尾部获取local// 这个循环的方式有点东西(pid+i+1)%int(size),优先从非pid的下标获取,最后一次是pidfor i := 0; i < int(size); i++ {l := indexLocal(locals, (pid+i+1)%int(size))if x, _ := l.shared.popTail(); x != nil {return x}}// 原子获取上一周期本地池大小size = atomic.LoadUintptr(&p.victimSize)if uintptr(pid) >= size { //如果pid大于size 说明让回收掉了return nil}locals = p.victiml := indexLocal(locals, pid)if x := l.private; x != nil {//看看私有属性是否存在对象,如果存在就可以直接返回l.private = nilreturn x}// 尝试从别的P poolLocal尾部获取localfor i := 0; i < int(size); i++ {l := indexLocal(locals, (pid+i)%int(size))if x, _ := l.shared.popTail(); x != nil {return x}}//将victimSize设置为0atomic.StoreUintptr(&p.victimSize, 0)return nil
}

 

Put函数

//代码位于 GOROOT/src/sync/pool.go L:95
func (p *Pool) Put(x any) {if x == nil { //如果写入的x为nil之间返回return}if race.Enabled { //使用竞态检查if fastrandn(4) == 0 {// Randomly drop x on floor.return}race.ReleaseMerge(poolRaceAddr(x))race.Disable() // 竞态检查 禁用}l, _ := p.pin() // 获取PoolLocalif l.private == nil { // 如果私有属性没有赋值l.private = x} else { //将x写入头l.shared.pushHead(x)}runtime_procUnpin()if race.Enabled { //使用竞态检查race.Enable() //竞态检查 启用}
}

pushHead函数解读
//代码位于 GOROOT/src/sync/poolqueue.go L:228
func (c *poolChain) pushHead(val any) {d := c.headif d == nil { //如果head为空,将head初始化为8长度的eface数组const initSize = 8 // Must be a power of 2d = new(poolChainElt)d.vals = make([]eface, initSize)c.head = dstorePoolChainElt(&c.tail, d) //将新创建的节点,当做尾节点}if d.pushHead(val) { //对象入队return}// 走到这里说明满了。可扩容为2倍newSize := len(d.vals) * 2// 扩容大小 (1 << 32) / 4 超出将这个设置为(1 << 32) / 4if newSize >= dequeueLimit { newSize = dequeueLimit}//新建poolChainElt将prev指向dd2 := &poolChainElt{prev: d}d2.vals = make([]eface, newSize)c.head = d2 //将新创建的节点,当做头节点storePoolChainElt(&d.next, d2) // 将老的节点指向,新节点d2.pushHead(val) //对象入队
}

 

延迟处理下标小技巧

package mainimport ("fmt"
)func main() {pid := 1size := 20for i := 0; i < int(size); i++ {if i == pid {continue}fmt.Println(i)}// 优化版本 pid会在最后一个打印处理for i := 0; i < size; i++ {index := (pid + i + 1) % size// 前面处理完以后直接returnfmt.Println(index)}
}

总结

我们从上面的源码分析了解Pool的数据结构、Get、Put这些基本操作原理,在项目中我们可以使用比特位来减少内存的占用,从源码分析我们得知Go官方设计不允许进行Pool复制(君子协议), 还学到了一个延迟处理下标的小技巧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/192787.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java基础-----Date类及其相关类(一)

文章目录 1. Date类1.1 简介1.2 构造方法1.3 主要方法 2. DateFormat 类2.1 简介2.2 实例化方式一&#xff1a;通过静态方法的调用2.2 实例化方式二&#xff1a;通过创建子类对象 3. Calendar类4. GregorianCalendar 1. Date类 1.1 简介 java.util.Date:表示指定的时间信息&a…

vivado实现分析与收敛技巧7-布局规划

关于布局规划 布局规划有助于设计满足时序要求。当设计难以始终如一满足时序要求或者从未满足时序要求时 &#xff0c; AMD 建议您执行布局规划。如果您与设计团队协作并且协作过程中一致性至关重要&#xff0c; 那么布局规划同样可以发挥作用。布局规划可通过减少平均布线延…

Redis-安装、配置和修改配置文件、以及在Ubuntu和CentOS上设置Redis服务的开机启动和防火墙设置,以及客户端连接。

目录 1. Redis简介 2. 离线安装 2.1 准备工作 2.2 解压、安装 2.3 修改配置文件 2.4 redis服务与关闭 2.5 redis服务的开机启动 2.5.1 Ubuntu上的配置 2.5.2 centos上的配置 3. 在线安装 4. 设置防火墙 5. 客户端连接 1. Redis简介 Redis 是完全开源免费的&#x…

鼠标点击效果.html(网上收集6)

<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>鼠标点击</title> </head><body> <script>(function () {var a_idx 0;window.onclick function (event) {var a new Array(…

【Python从入门到进阶】43.验证码识别工具结合requests的使用

接上篇《42、使用requests的Cookie登录古诗文网站》 上一篇我们介绍了如何利用requests的Cookie登录古诗文网。本篇我们来学习如何使用验证码识别工具进行登录验证的自动识别。 一、图片验证码识别过程及手段 上一篇我们通过requests的session方法&#xff0c;带着原网页登录…

人工智能 - 人脸识别:发展历史、技术全解与实战

目录 一、人脸识别技术的发展历程早期探索&#xff1a;20世纪60至80年代技术价值点&#xff1a; 自动化与算法化&#xff1a;20世纪90年代技术价值点&#xff1a; 深度学习的革命&#xff1a;21世纪初至今技术价值点&#xff1a; 二、几何特征方法详解与实战几何特征方法的原理…

python安装与配置:在centos上使用shell脚本一键安装

介绍 Python是一种功能强大且广泛使用的编程语言&#xff0c;但在某些情况下&#xff0c;您可能需要安装和配置特定版本的Python。本教程将向您展示如何使用一个Shell脚本自动完成这个过程&#xff0c;以便您可以快速开始使用Python 3。 使用shell自动化安装教程 1. 复制脚本…

51单片机项目(19)——基于51单片机的传送带产品计数器

1.功能描述 应用背景: 某生产线的传送带上不断地有产品单向传送&#xff0c;传送时会通过光电传感器产生方波信号&#xff0c;将该信号(可以采用方波发生器来模拟该信号)直接传送给51单片机&#xff0c;利用计数器0计量产品(方波信号)的个数&#xff0c;利用.定时器1产…

Python海绵宝宝

目录 系列文章 写在前面 海绵宝宝 写在后面 系列文章 序号文章目录直达链接表白系列1浪漫520表白代码https://want595.blog.csdn.net/article/details/1306668812满屏表白代码https://want595.blog.csdn.net/article/details/1297945183跳动的爱心https://want595.blog.cs…

leetcode 209. 长度最小的子数组(优质解法)

代码&#xff1a; //时间复杂度 O(N) ,空间复杂度 O(1) class Solution {//采用滑动窗口的方法解决public int minSubArrayLen(int target, int[] nums) {int numsLengthnums.length;int minLengthInteger.MAX_VALUE;int left0;int right0;int sum0;while (right<numsLengt…

【SpringBoot】讲清楚日志文件lombok

文章目录 前言一、日志是什么&#xff1f;二、⽇志怎么⽤&#xff1f;三.自定义打印日志3.1在程序中得到日志对象3.2使用日志打印对象 四.⽇志级别4.1日志级别有什么用4.2 ⽇志级别的分类与使⽤ 五.日志持久化六.lombok6.1添加lobok依赖注意&#xff1a;使⽤ Slf4j 注解&#x…

Linux 多线程(C语言) 备查

基础 1&#xff09;线程在运行态和就绪态不停的切换。 2&#xff09;每个线程都有自己的栈区和寄存器 1&#xff09;进程是资源分配的最小单位&#xff0c;线程是操作系统调度执行的最小单位 2&#xff09;线程的上下文切换的速度比进程快得多 3&#xff09;从应用程序A中启用应…

Linux系列-1 Linux启动流程——init与systemd进程

背景&#xff1a; 最近对所有项目完成了一个切换&#xff0c;服务管理方式由&#xff1a; init-> systemd。对相关知识进行总结一下。 1.启动流程 服务器的整体启动流程如下图所示&#xff1a; POST&#xff1a; 计算机通电后进行POST( Power-On Self-Test )加电自检&am…

linux之buildroot(3)配置软件包

Linux之buildroot(3)配置软件包 Author&#xff1a;Onceday Date&#xff1a;2023年11月30日 漫漫长路&#xff0c;才刚刚开始… 全系列文章请查看专栏: buildroot编译框架_Once_day的博客-CSDN博客。 参考文档&#xff1a; Buildroot - Making Embedded Linux Easymdev.t…

Hdoop学习笔记(HDP)-Part.17 安装Spark2

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

canvas 轮廓路径提取效果

前言 微信公众号&#xff1a;前端不只是切图 轮廓 对内容做border效果&#xff0c;可以先看下代码运行的效果 内容是黑线构成的五角星&#xff0c;其轮廓就是红线的部分&#xff0c;本文主要介绍如何在canvas中实现这种效果 Marching Square 这里运用到的是marching square算法…

鸿蒙是Android套壳么,当然不是,ArkTS还是很有意思的

前段时间看新闻&#xff0c;说是明年开始鸿蒙就要和andorid脱钩了。 大概就是这样的&#xff1a; 看到这个&#xff0c;我兴趣就来了。我有个华为P30&#xff0c;升级过鸿蒙系统&#xff0c;用起来也没啥变化&#xff0c;兼容andorid应用&#xff0c;然后就是开机去掉了Powere…

数据库表的管理

表的基本概念 表是包含数据库中所有数据的数据库对象。数据在表中的组织方式与在电子表格中相似&#xff0c;都是 按行和列的格式组织的。每行代表一条唯一的记录&#xff0c;每列代表记录中的一个字段。例如&#xff0c;在包含公 司员工信息的表中&#xff0c;每行代表一名员工…

19.字符串——查找三个字符串中的最大字符串(打擂台)

文章目录 前言一、题目描述 二、题目分析 三、解题 程序运行代码 四、举一反三总结 前言 本系列为字符串处理函数编程题&#xff0c;点滴成长&#xff0c;一起逆袭。 一、题目描述 查找三个字符串中的最大字符串 二、题目分析 打擂台 三、解题 程序运行代码 #include<…

从零开始:PHP实现阿里云直播的简单方法!

1. 配置阿里云直播的推流地址和播放地址 使用阿里云直播功能前&#xff0c;首先需要在阿里云控制台中创建直播应用&#xff0c;然后获取推流地址和播放地址。 推流地址一般格式为&#xff1a; rtmp://{Domain}/{AppName}/{StreamName}?auth_key{AuthKey}-{Timestamp}-{Rand…