深度学习 -- 卷积神经网络

1、卷积神经网络的结构

大卫·休伯尔( David Hunter Hubel ) 等人研究发现,猫的视皮层上 存在简单细胞( simple cell )和复杂细胞( complex cell ),简单细胞会对 感受野中特定朝向的线段做出反应,而复杂细胞对于特定朝向的钱段移动也能做出反应,

福岛邦彦在此基础上提出了神经认知机模型,这是一种分 层神经网络模型。 神经认知机由负责对比度提取的 G 层,以及负责 图形特征提取的S细胞层和抗变形的C细胞层交替排列组成。 最上层的 C 细胞会输出识别结果 。 S 细胞和C 细胞分别根据简单细胞和复杂细胞 的英语首字母得名。 借助于 S细胞层和 C细胞层交替排列的结构,各种 输入模式的信息会在经过 S 细胞层提取特征后,通过 C 细胞层对特征琦变的容错,并在反复迭代后被传播到上一层。 经过这个过程,在底层提取 的局部特征会逐渐变成全局特征 。 因输入模式扩大、缩小或平移而产生 的畸变也能很好地被 C 细胞消除,所以网络对变形具有较好的稳健性。

神经认知机中,如果没有任何细胞对输入模式做出反应,就采用增加细胞的学习规则。 通过引人神经网络中的误差反向传播算法,人们得 到了卷积神经网络( Convolutional Neural Network)。 LeCun 等人提出的卷积神经网络和神经认知机一样,也是基于人类视皮层巾感受野的 结构得到的模型。 如下所示,卷积神经网络由输入层( input layer)、卷积层( convolution layer )、池化层(pooling layer )、全连接层(fully connected layer )和输出层( output layer )组成。 通过增加卷积层和池化层,还可以得到更深层次的网络,其后的全连接层也可以采用多层结构 。

2、卷积层

卷积神经网络中的卷积操作可以看作是输入样本和卷积核的内积运算 。 在第一层卷积层对输入样本进行卷积操作后 , 就可以得到特征图。 卷积层中是使用同一卷积核对每个输入样本进行卷积操作的。 在第二层及其以后的卷积层,把前一层的特征图作为输入数据,同 样进行卷积操作 。 该卷积操作与 Hubel-Wiesel 实验中的简单细胞具有相同 的作用。 如下图所示,对10 × 10的输入样本使用 3 × 3的卷积核进行卷 积操作后,可以得到一个 8 × 8 的特征图 。 特征阁的尺寸会小于输入样本, 为了得到和原始输入样本大小相同的特征图,可以采用对输入样本进行填充( padding)处理后再进行卷积操作的方法。 零填充( zero-padding)指 的就是用 0 填充输入样本的边界,填充大小为 P = (F -1)/2,其中 F 为 卷积核尺寸 。 在图 中,卷积核的滑动步长为 1。 我们也可以设定更 大的滑动步长,步快越大则特征图越小 。 另外,卷积结果不能直接作为特征图,需通过撒活函数计算后,把函数输出结果作为特征图 。

一个卷积层中可以有多个不同的卷积核,而每一个卷积核都对应一 个特征图 。

当卷积层的输入样本是三通道的彩色罔像时,卷积核就 会是三维的 3×M×M,M表示卷积核大小。 第二层及其以后的卷积层 的输入是上一层的特征图,而特征图的个数是由上一层的卷积核数决定 的。 例如, 当上一层的卷积核数为 8时,就会得到 8个特征图作为下一 层的输入,所以下一层需要 8个三维的 8×M×M卷积核。

3、池化层

池化层的作用是减小卷积层产生的特征图的尺寸 。 选取一个区域, 根据该区域的特征图得到新的特征图,这个过程就称为池化操作 。 对一 个 2×2 的区域进行池化操作后,得到的新特征图会被斥缩为原来尺寸 的 1/4。 池化操作降低了特征图的维度,使得特征表示对输入数据的位置变化具有稳健性。 池化操作与 Hubel-Wiesel实验中的复杂细胞具有相同的作用。 主要的池化方法如下图 3所示。 其中最常使用的是图 (a) 所示的 最大池化, 最大池 化是选取图像区域内的最大值作为新的特征图。 另外还有图 (b)所示的平均池化,以及图 (c)所示的 Lp池化。 平均池化是取图像区域内的平均值作为新的特征图 。 Lp 池化则 是通 过突出图像区域内的中央值而计算新的特征图 。在图 (c)中的公式中,p越大越能突出中心位置的值。

4、全连接层

和多层感知器一样,全连接层也是首先计算激活值,然后通过激 活函数计算各单元的输出值 。 激活函数包括 sigmoid、 tanh、 ReLU 等函 数。 由于全连接层的输入就是卷积层或池化层的输出,是二维的特征图,所以需要对二维特征图进行降维处理

5、输出层

和多层感知器的输出层一样,卷积神经网络的输出层也是使用似然函数计算各类别的似然概率。 卷积神经网络出现后,最先被应用在了手写字符分类上。 手写字符识别用到的是 0到 9这 10个数字,所以共有 10个输出单元。 每个单元对应一个类别, 使用公式(5.1)的softmax函数可以计算输出单元的似然概率,然后把概率最大的数字作为分类结果输出

公式5.1: p(y^k) = \frac{exp(u_{2k})}{\sum_{q=1}^{Q}exp(u_{2q})}

在递归问题中, 一般使用线性输出函数(公式5.2)计算各单元的输出值。

公式5.2: p(y^k) = \sum_{m=1}^{M}W_{pm}X_{m}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/192730.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

伪原创API,批量创作伪原创文章

内容创作已经成为互联网领域中不可或缺的一环。越来越多的内容创作者和网站管理员开始寻找更高效的伪原创工具,以确保其内容的独特性。 百度文心一言API 我们来了解一下百度文心一言API。作为百度文心推出的一项人工智能服务,通过自然语言处理技术&…

【开源威胁情报挖掘3】开源威胁情报融合评价

基于开源信息平台的威胁情报挖掘综述 写在最前面5. 开源威胁情报关联分析5.1 开源威胁情报网络狩猎:技术、方法和最新研究应用实例和未来方向 5.2 开源威胁情报态势感知关键技术和方法应用实例和未来方向 5.3 开源威胁情报恶意检测关键技术和方法应用实例和未来方向…

【大学英语视听说上】“智力”口语问答练习

题目: book 2, page 9, question 4 回答: 1: What do you think of the view “Intelligence must be bred, not trained”? I think this view is biased. The view suggests that intelligence is primarily determined by genetic factors and inh…

生成对抗网络——研讨会

时隔一年,再跟着李沐大师学习了GAN之后,仍旧没能在离散优化中实现通用的应用,实在惭愧,借着组内研讨会的机会,再队GAN的前世今生做一个简单的综述。 GAN产生的背景 目前与GAN相关的应用 去reddit社区的机器学习板块…

【ArcGIS Pro微课1000例】0041:Pro强大的定位搜索功能、定位窗格、地图上查找地点

一谈到搜索,你是不是还停留在矢量数据的属性表中呢?今天给大家介绍ArcGIS Pro中定位搜索强大功能的使用,可以基于在线地图、矢量数据等多种数据源,进行地址、地名、道路、坐标等的查找。 文章目录 一、定位工具介绍二、在线地图搜索三、本地矢量数据搜索四、无地图搜索五、…

为何全球电商都在拼“质价比”?

远在西雅图的希拉里,在著名的“黑色星期五”大促开始之前,她就已经准备好了一份购物清单。 然而,她发现身边的朋友们总是拉她组团购物。 在朋友和社交媒体的持续轰炸下,希拉里决定尝试一下这个让人贼上头的Temu。 最终&#xf…

学习-java多线程面试题

为什么不建议用Executors启动线程池 *队列LinkedBlockingQueue是没有边界的队列,请求多会造成OOM *建议使用ThreadPoolExecutors 线程池中提交一个任务的流程? 1先判断线程池是否有线程,如果与就直接执行,没有就放队列 2如果队列满了&#…

Linux常用命令——atrm命令

在线Linux命令查询工具 atrm 删除待执行任务队列中的指定任务 补充说明 atrm命令用于删除待执行任务队列中的指定任务。 语法 atrm(选项)(参数)选项 -V:显示版本号。参数 任务号:指定待执行队列中要删除的任务。 实例 删除已经排队的任务 atq…

FPGA纯verilog实现 LZMA 数据压缩,提供工程源码和技术支持

FPGA纯verilog实现 LZMA 数据压缩,提供工程源码和技术支持 目录 1、前言2、我这儿已有的FPGA压缩算法方案3、FPGA LZMA数据压缩功能和性能4、FPGA LZMA 数据压缩设计方案 输入输出接口描述数据处理流程 LZ检索器数据同步LZMA 压缩器为输出LZMA压缩流添加文件头5、…

Debian下载安装教程

目录 一.前言二.下载三.安装 一.前言 这篇文章展示如何使用VMware Workstation Player安装Debian12虚拟机。 二.下载 官网地址:官网 进入官网之后可以直接点击下载Debian选项,这样下载的是最新版的网络安装镜像。 三.安装 使用VMware Workstation P…

PTA校赛算法题十道java、C++详解

目录 7-1 专1 签到 7-2 专2 令人眼花缭乱的字符串 7-3 专3 VALORANT 7-4 专4 吃蛋糕 7-5 专5 Game 7-6 专6 二进制回文串 7-7 专7 度假 7-8 专8 括号匹配Plus 7-9 专9 生成最少叶子树 7-10 专10 禁止超速 这篇文章是基于我们前不久的校赛写的,校赛给的…

麒麟系统添加环境变量

环境变量添加方法 方法一:用户主目录下的.profile或.bashrc文件(推荐) 登录到你的用户(非root),在终端输入: sudo vim ~/.profile 或者 sudo vim ~/.bashrc 翻到该文件最后&#xff0c…

电容和电感

一、电感 1)图片 2)作用 a)储存容量 例如dcdc转换器的原理,将一个电压值转换成另外一个电压值 b)选择信号 比如空气中弥漫着很多信号,我们应该怎么选取我们所需要的信号。 电感和电容可以看成一个电阻,当电…

PTA结构体经典编程题

目录 第一题:计算平均成绩 第二题:平面向量加法 第三题:查找书籍 第四题:通讯录排序 第五题:计算职工工资 第一题:计算平均成绩 思路:看到一个学生的基本信息,所以定义一个结构…

神经网络模型预训练

根据神经网络各个层的计算逻辑用程序实现相关的计算,主要是:前向传播计算、反向传播计算、损失计算、精确度计算等,并提供保存超参数到文件中。 # coding: utf-8 import sys, os sys.path.append(os.pardir) # 为了导入父目录的文件而进行的…

【Python百练——第3练】矩形类及操作

💐作者:insist-- 💐个人主页:insist-- 的个人主页 理想主义的花,最终会盛开在浪漫主义的土壤里,我们的热情永远不会熄灭,在现实平凡中,我们终将上岸,阳光万里 ❤️欢迎点…

Golang 原生Rpc Server实现

Golang 原生Rpc Server实现 引言源码解析服务端数据结构服务注册请求处理 客户端数据结构建立连接请求调用 延伸异步调用定制服务名采用TPC协议建立连接自定义编码格式自定义服务器 参考 引言 本文我们来看看golang原生rpc库的实现 , 首先来看一下golang rpc库的demo案例: 服…

python的制图

测试数据示例: day report_user_cnt report_user_cnt_2 label 2023-10-01 3 3 欺诈 2023-10-02 2 4 欺诈 2023-10-03 6 5 欺诈 2023-10-04 2 1 正常 2023-10-05 4 3 正常 2023-10-06 4 4 正常 2023-10-07 2 6 正常 2023-10-08 3 7 正常 2023-10-09 3 12 正常 2023-…

找不到DNS地址的解决方案

找不到DNS地址的解决方案 第一种解决方案:刷新DNS缓存第二种解决方案: 配置Internet协议版本4(TCP/IPv4)配置IP地址配置DNS地址 如何查看本机IPv4地址、子网掩码与默认网关 第一种解决方案:刷新DNS缓存 WINR输入cmd回…

基于SSH三大框架的员工管理系统

基于SSH三大框架的员工管理系统 摘要 本系统为本人学习SSH三大框架时所做的整合实例,系统角色包括普通用户和管理员两种,首页有管理员登录入口链接。系统功能主要包括管理员对用户的基本增、删、改、查和分页显示用户信息等。 系统环境 本系统使用ec…