一、无人机模型简介:
单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客
参考文献:
[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120
二、Tiki-taka算法(TTA)简介
极致攻守算法(Tiki-Taka Algorithm,TTA)由Mohd Fadzil Faisae Ab. Rashid于2020年提出,该算法受tiki-taka 足球风格的短传、球员定位和保持控球的特点所启发。其旨在控制控球权并利用其战术优势击败对手,TTA算法新颖高效。单目标应用:Tiki-taka算法(TTA)求解太阳能光伏模型MATLAB_IT猿手的博客-CSDN博客
参考文献:
[1]Ab. Rashid, M.F.F. (2021), "Tiki-taka algorithm: a novel metaheuristic inspired by football playing style", Engineering Computations, Vol. 38 No. 1, pp. 313-343. Tiki-taka algorithm: a novel metaheuristic inspired by football playing style | Emerald Insight
[2]Zamli, Kamal Z , Kader, et al. Selective chaotic maps Tiki-Taka algorithm for the S-box generation and optimization.
三、TTA求解无人机路径规划
(1)部分代码
close all clear clc addpath('./Algorithm/')%添加算法路径 warning off; %% 三维路径规划模型定义 global startPos goalPos N N=2;%待优化点的个数(可以修改) startPos = [10, 10, 80]; %起点(可以修改) goalPos = [80, 90, 150]; %终点(可以修改) SearchAgents_no=30; % 种群大小(可以修改) Function_name='F2'; %F1:随机产生地图 F2:导入固定地图 Max_iteration=50; %最大迭代次数(可以修改) % Load details of the selected benchmark function [lb,ub,dim,fobj]=Get_Functions_details(Function_name); [Best_score,Best_pos,curve]=TTA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%算法优化求解 AlgorithmName='TTA';%算法名字 figure semilogy(curve,'Color','g','linewidth',3) xlabel('迭代次数'); ylabel('飞行路径长度'); legend(AlgorithmName) display(['算法得到的最优适应度: ', num2str(Best_score)]); Position=[Best_pos(1:dim/3); Best_pos(1+dim/3:2*(dim/3)); Best_pos(1+(2*dim/3):end)]'; %优化点的XYZ坐标(每一行是一个点) plotFigure(Best_pos,AlgorithmName)%画最优路径
(2)部分结果
无人机飞行路径坐标:
1.0000000e+01 1.0000000e+01 8.0000000e+011.0462995e+01 1.0477171e+01 8.0627999e+011.0913211e+01 1.0913530e+01 8.1223090e+011.1351567e+01 1.1311203e+01 8.1786813e+011.1778985e+01 1.1672315e+01 8.2320707e+011.2196385e+01 1.1998990e+01 8.2826314e+011.2604688e+01 1.2293355e+01 8.3305172e+011.3004814e+01 1.2557533e+01 8.3758822e+011.3397683e+01 1.2793650e+01 8.4188804e+011.3784217e+01 1.3003830e+01 8.4596657e+011.4165336e+01 1.3190200e+01 8.4983922e+011.4541961e+01 1.3354883e+01 8.5352138e+011.4915011e+01 1.3500005e+01 8.5702846e+011.5285408e+01 1.3627691e+01 8.6037585e+011.5654072e+01 1.3740065e+01 8.6357896e+011.6021924e+01 1.3839254e+01 8.6665318e+011.6389884e+01 1.3927381e+01 8.6961391e+011.6758873e+01 1.4006571e+01 8.7247655e+011.7129811e+01 1.4078951e+01 8.7525651e+011.7503620e+01 1.4146645e+01 8.7796918e+011.7881219e+01 1.4211777e+01 8.8062996e+011.8263529e+01 1.4276473e+01 8.8325424e+011.8651471e+01 1.4342857e+01 8.8585744e+011.9045965e+01 1.4413056e+01 8.8845495e+011.9447932e+01 1.4489193e+01 8.9106216e+011.9858292e+01 1.4573394e+01 8.9369449e+012.0277966e+01 1.4667784e+01 8.9636732e+012.0707875e+01 1.4774488e+01 8.9909606e+012.1148938e+01 1.4895630e+01 9.0189611e+012.1602078e+01 1.5033337e+01 9.0478286e+012.2068214e+01 1.5189732e+01 9.0777172e+012.2548266e+01 1.5366940e+01 9.1087808e+012.3043156e+01 1.5567088e+01 9.1411735e+012.3553803e+01 1.5792299e+01 9.1750492e+012.4081129e+01 1.6044700e+01 9.2105620e+012.4626055e+01 1.6326414e+01 9.2478658e+012.5189499e+01 1.6639566e+01 9.2871146e+012.5772384e+01 1.6986283e+01 9.3284624e+012.6375630e+01 1.7368688e+01 9.3720633e+012.7000157e+01 1.7788907e+01 9.4180712e+012.7646886e+01 1.8249065e+01 9.4666400e+012.8316737e+01 1.8751287e+01 9.5179239e+012.9010632e+01 1.9297698e+01 9.5720768e+012.9729489e+01 1.9890422e+01 9.6292527e+013.0474231e+01 2.0531585e+01 9.6896056e+013.1245778e+01 2.1223312e+01 9.7532894e+013.2045050e+01 2.1967728e+01 9.8204583e+013.2872968e+01 2.2766958e+01 9.8912661e+013.3730452e+01 2.3623126e+01 9.9658668e+013.4618423e+01 2.4538358e+01 1.0044415e+023.5537802e+01 2.5514779e+01 1.0127063e+023.6489509e+01 2.6554514e+01 1.0213967e+023.7474464e+01 2.7659688e+01 1.0305279e+023.8493589e+01 2.8832425e+01 1.0401155e+023.9547803e+01 3.0074851e+01 1.0501748e+024.0638028e+01 3.1389092e+01 1.0607211e+024.1765184e+01 3.2777270e+01 1.0717699e+024.2930191e+01 3.4241513e+01 1.0833367e+024.4133970e+01 3.5783945e+01 1.0954367e+024.5377442e+01 3.7406690e+01 1.1080854e+024.6661527e+01 3.9111874e+01 1.1212982e+024.7987146e+01 4.0901622e+01 1.1350905e+024.9355219e+01 4.2778059e+01 1.1494777e+025.0766667e+01 4.4743310e+01 1.1644751e+025.2222410e+01 4.6799499e+01 1.1800983e+025.3723370e+01 4.8948752e+01 1.1963625e+025.5270466e+01 5.1193194e+01 1.2132833e+025.6864619e+01 5.3534950e+01 1.2308759e+025.8506750e+01 5.5976145e+01 1.2491558e+026.0197779e+01 5.8518904e+01 1.2681384e+026.1938627e+01 6.1165351e+01 1.2878391e+026.3730214e+01 6.3917612e+01 1.3082732e+026.5573462e+01 6.6777812e+01 1.3294563e+026.7469290e+01 6.9748076e+01 1.3514036e+026.9418619e+01 7.2830529e+01 1.3741307e+027.1422369e+01 7.6027295e+01 1.3976528e+027.3481462e+01 7.9340501e+01 1.4219853e+027.5596818e+01 8.2772270e+01 1.4471438e+027.7769357e+01 8.6324728e+01 1.4731436e+028.0000000e+01 9.0000000e+01 1.5000000e+02