pytorch中Conv1d、Conv2d与Conv3d详解

1 卷积介绍

1.1 什么是卷积

卷积(convolution),是一种运算,你可以类比于加,减,乘,除,矩阵的点乘与叉乘等等,它有自己的运算规则,卷积的符号是星号*。表达式为:

连续卷积表达式:

离散卷积表达式为:

从参数上来看,x + (n-x) = n,可以类比为x + y = n,也就是说f, g的参数满足规律y = -x + n,即g的参数是f的参数先翻转再平移n。把g从右边褶到左边去,也就是卷积的卷的由来。然后在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的积的过程。

因此卷积的过程可以理解为:翻转,滑动,叠加。其中翻转指的是g,滑动指的是n值在不断改变。最终将他们相乘相加。

1.2 卷积的意义

在泛函分析中,卷积、旋积或褶积是通过两个函数f和g生成第三个函数的一种数学运算,其本质是一种特殊的积分变换,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。

如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积的意义如下:

  • 模拟生物视觉:卷积操作模拟了人眼对图像进行观察、辨认的过程,因此卷积在图像处理领域应用广泛。它可以帮助我们理解人类视觉系统如何工作,并且为我们提供了一种有效的处理图像和语音的方法。

  • 提升算法性能:卷积神经网络(CNN)是目前深度学习中最重要的模型之一,其基本结构就是卷积层,卷积操作在图像识别、语音识别和自然语言处理等领域提升了算法的性能。这使得卷积成为了现代机器学习和人工智能的重要组成部分。

  • 数据压缩:卷积可以通过降维和滤波等操作减小数据的尺寸,从而实现数据的压缩。这对于处理大规模数据、实现数据存储和传输非常有用。

1.3 图像的卷积处理

对图像的blur操作,即降噪平滑操作,就是使用的卷积运算,最终的效果取决于卷积核的设置。以单通道卷积为例。

均值卷积核,就是认为目标像素点的值是周围值的平均数,即周围各点对它的影响是一样的,此处卷积核以3X3为例。

高斯滤波认为各个像素点距离核中心的距离不一样,导致颜色的贡献程度不一样,因此给不同的点不同的权重。取图像中的部分像素点

我们把这个矩阵看成f(x,y)函数,下标为参数,像素点的值为函数结果,那么要求f(1,1)处的卷积运算结果,因为现在是二维函数了,因此对应的卷积表达式为:

对应到本例u=1, v=1

 

我们来构建g(1-x, 1-y)函数,暂定为3X3的矩阵,我们知道目标点f(1,1)要对应g(0,0),如果将g(0,0)设置在核的中心,那么根据下标展开之后我们就可以构建出g

 有了g函数之后,就可以执行运算了,注意运算的时候 f 和 g 的参数要符合卷积公式,即

其实这样就够了,但是便于理解和说明,我们将矩阵先沿着X轴翻转,再沿Y轴翻转,中心点在 g(0,0) 处,得到

虽然翻转了,但是运算公式没有变化,只是从观察上更好一一对应,也更方便计算。 

注意,将卷积核盖在目标像素点上面,将对应的像素点相乘相加,这种运算应该叫互相关运算(cross-correlation),通过将g进行翻转,使得卷积运算变成了互相关运算,将翻转之后的矩阵称为卷积核,并且在设计卷积核的时候就是参照互相关运算来的,而不会去关心真正的卷积运算。因此在实际应用中通常是直接去构建这个最终的矩阵。

在后续的计算中,将结果赋值给f(1,1),然后向右平移一格,达到边界后向下平移一格继续从左边开始卷积。整个过程中最外一层无法被算到,解决的方法是将原图像向外扩大一圈像素点并设置为0。通过设置不同的卷积核来达到不同的结果,这是机器视觉的基础操作。

2 pytorch中的卷积

CNN是深度学习的重中之重,而conv1Dconv2D,和conv3D又是CNN的核心,所以理解conv的工作原理就变得尤为重要,卷积中几个核心概念如下:

  • 卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加。

  • 卷积核:又称为滤波器,过滤器,可认为是某种特征。

  • 卷积过程类似于用一个模版去图像上寻找与它相似的区域,与卷积核模式越相似,激活值越高,从而实现特征提取。

  • 卷积维度:一般情况下 ,卷积核在几个维度上滑动就是几维卷积。

2.1 一维卷积nn.Conv1d

一维卷积nn.Conv1d主要用于文本数据,只对宽度进行卷积,对高度不卷积。通常,输入大小为word_embedding_dim * max_length,其中,word_embedding_dim为词向量的维度,max_length为句子的最大长度。卷积核窗口在句子长度的方向上滑动,进行卷积操作。

2.1.1 函数原型

torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数说明:

  • in_channels (int) – 输入通道数;在文本应用中,即为词向量的维度;

  • out_channels (int) – :输出通道数,等价于卷积核个数;

  • kernel_size (int or tuple) – 卷积核大小;卷积核的第二个维度由in_channels决定,所以实际上卷积核的大小为kernel_size * in_channels

  • stride (int or tuple, optional) – 卷积步长,默认为 1;

  • padding (int or tuple, optional) – Zero-padding,默认为 0;对输入的每一条边,补充0的层数;

  • padding_mode (string, optional) – ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’. Default: ‘zeros’;

  • dilation (int or tuple, optional) – 空洞卷积尺寸,默认为 1;

  • groups (int, optional) – 分组卷积设置,Number of blocked connections from input channels to output channels. Default: 1;

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True。

2.1.2 原理示意图

1D输入上的1D卷积示意图:

2D输入上的1D卷积示意图 

 

 

说明:

  •     对于一个卷积核(kernel),不管是1D输入还是2D输入,其输出都是1D矩阵;

  •     卷积核的高度必须与输入特征图的高度相匹配;即 input = [W,L], filter = [k,L] output = [W];

  •     对于多个卷积核的情况,其经过Conv1D之后,输出堆叠为2D矩阵,如果卷积核的个数为N,则输出的尺寸为 1D x N

  •     1D卷积常用在时间序列数据的建模上。

尺寸计算:

注意:

  • 其中, N表示卷积核个数; C_{in}表示输入通道数; L_{in}表示输入的长度;

  • C_{in}必须与 Conv1D 中设置的 in_channels (int) 相等。

  • C_{out}​ = Conv1D 中设置的 out_channels。

2.1.3 示例代码

输入:批大小为32,句子的最大长度为35,词向量维度为256
目标:句子分类,共2类

import torch
import torch.nn as nnconv1 = nn.Conv1d(in_channels=256, out_channels=100, kernel_size=2)
input = torch.randn(32, 35, 256)
input = input.permute(0, 2, 1)
output = conv1(input)
print(output.shape)

假设window_size = [3, 4, 5, 6],即共有四个卷积核,基于上述代码,具体计算过程如下:

  1. 原始输入大小为(32, 35, 256),经过permute(0, 2, 1)操作后,输入的大小变为(32, 256, 35)
  2. 使用1个卷积核进行卷积,可得到1个大小为32 x 100 x 1的输出,共4个卷积核,故共有4个大小为32 x 100 x 1的输出;
  3. 将上一步得到的4个结果在dim = 1上进行拼接,输出大小为32 x 400 x 1
  4. view操作后,输出大小变为32 x 400
  5. 全连接,最终输出大小为32 x 2,即分别预测为2类的概率大小。

2.2 二维卷积Conv2D

二维卷积nn.Conv2d通常用于图像数据,对宽度和高度都进行卷积。

2.2.1 函数原型

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数说明:

  • in_channels (int) – 输入通道数;

  • out_channels (int) – :输出通道数,等价于卷积核个数;

  • kernel_size (int or tuple) – 卷积核大小;

  • stride (int or tuple, optional) – 卷积步长,默认为 1;

  • padding (int or tuple, optional) – Zero-padding,默认为 0;

  • padding_mode (string, optional) – ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’. Default: ‘zeros’;

  • dilation (int or tuple, optional) – 空洞卷积尺寸,默认为 1;

  • groups (int, optional) – 分组卷积设置,Number of blocked connections from input channels to output channels. Default: 1;

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True。

2.2.2 原理示意图

输出计算:

2.2.3 示例代码

假设现有大小为32 x 32的图片样本,输入样本的channels为1,该图片可能属于10个类中的某一类。CNN框架定义如下:

class CNN(nn.Module):def __init__(self):nn.Model.__init__(self)self.conv1 = nn.Conv2d(1, 6, 5)  # 输入通道数为1,输出通道数为6self.conv2 = nn.Conv2d(6, 16, 5)  # 输入通道数为6,输出通道数为16self.fc1 = nn.Linear(5 * 5 * 16, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):# 输入x -> conv1 -> relu -> 2x2窗口的最大池化x = self.conv1(x)x = F.relu(x)x = F.max_pool2d(x, 2)# 输入x -> conv2 -> relu -> 2x2窗口的最大池化x = self.conv2(x)x = F.relu(x)x = F.max_pool2d(x, 2)# view函数将张量x变形成一维向量形式,总特征数不变,为全连接层做准备x = x.view(x.size()[0], -1)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x

网络整体结构:[conv + relu + pooling] * 2 + FC * 3
原始输入样本的大小:32 x 32 x 1

  • 第一次卷积:使用6个大小为5 x 5的卷积核,故卷积核的规模为(5 x 5) x 6;卷积操作的stride参数默认值为1 x 1,32 - 5 + 1 = 28,并且使用ReLU对第一次卷积后的结果进行非线性处理,输出大小为28 x 28 x 6

  • 第一次卷积后池化:kernel_size2 x 2,输出大小变为14 x 14 x 6

  • 第二次卷积:使用16个卷积核,故卷积核的规模为(5 x 5 x 6) x 16;使用ReLU对第二次卷积后的结果进行非线性处理,14 - 5 + 1 = 10,故输出大小为10 x 10 x 16

  • 第二次卷积后池化:kernel_size同样为2 x 2,输出大小变为5 x 5 x 16

  • 第一次全连接:将上一步得到的结果铺平成一维向量形式,5 x 5 x 16 = 400,即输入大小为400 x 1,W大小为120 x 400,输出大小为120 x 1

  • 第二次全连接,W大小为84 x 120,输入大小为120 x 1,输出大小为84 x 1

  • 第三次全连接:W大小为10 x 84,输入大小为84 x 1,输出大小为10 x 1,即分别预测为10类的概率值。

2.3 三维卷积Conv3D

3D卷积常用于医学影像图像分割以及视频中的动作检测

2.3.1 函数原型

class torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数说明:

  • in_channels (int) – 输入通道数;

  • out_channels (int) – :输出通道数,等价于卷积核个数;

  • kernel_size (int or tuple) – 卷积核大小;

  • stride (int or tuple, optional) – 卷积步长,默认为 1;

  • padding (int or tuple, optional) – Zero-padding,默认为 0;

  • padding_mode (string, optional) – ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’. Default: ‘zeros’;

  • dilation (int or tuple, optional) – 空洞卷积尺寸,默认为 1;

  • groups (int, optional) – 分组卷积设置,Number of blocked connections from input channels to output channels. Default: 1;

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True。

2.3.2 原理示意图

动态执行示意图:

输出计算:

2.4 空洞卷积

空洞卷积诞生于图像分割领域,比如FCN网络,首先像传统的CNN一样,先卷积后池化,经过池化层之后,图像尺寸降低,感受野增大,但是因为图像分割需要实现像素级的输出,所以要将经过池化之后的较小的特征图通过转置卷积(反卷积)降采样到与原始图像相同的尺寸。之前的池化操作使得原特征图中的每个像素都具有较大的感受野,因此FCN中的两个关键:一是通过池化层增大感受野,二是通过转置卷积增大图像尺寸。在先减小后增大的过程中,肯定会丢失信息,那么能否不同池化层也可以使得网络具有较大的感受野呢?空洞卷积应运而生。

原理示意图如下:

  • (a)图 对应3x3的1-dilated conv,和普通的卷积操作一样;

  • (b)图 对应3x3的2-dilated conv,实际的卷积 kernel size 还是 3x3,但是空洞为1,也就是对于一个7x7的图像patch,只有9个红色的点和3x3的kernel发生卷积操作,其余的点略过。也可以理解为kernel的size为7x7,但是只有图中的9个点的权重不为0,其余都为0。 可以看到虽然kernel size只有3x3,但是这个卷积的感受野已经增大到了7x7(如果考虑到这个2-dilated conv的前一层是一个1-dilated conv的话,那么每个红点就是1-dilated的卷积输出,所以感受野为3x3,所以1-dilated和2-dilated合起来就能达到7x7的conv);

  • (c)图 是4-dilated conv操作,同理跟在两个1-dilated和2-dilated conv的后面,能达到15x15的感受野。对比传统的conv操作,3层3x3的卷积加起来,stride为1的话,只能达到(kernel-1)*layer+1=7的感受野,也就是和层数layer成线性关系,而dilated conv的感受野是指数级的增长。

  • dilated的好处是不做pooling损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。在图像需要全局信息或者语音文本需要较长的sequence信息依赖的问题中,都能很好的应用dilated conv,比如图像分割[3]、语音合成WaveNet[2]、机器翻译ByteNet[1]中。

2.5 转置卷积

卷积是使输出大小变小的过程。 因此,而反卷积(deconvolution)可以进行向上采样以增大输出大小。但是,反卷积并代表卷积的逆过程。因此它也被称为向上卷积或转置卷积(transposed convolution)。 当使用分数步幅时,也称为分数步幅卷积(fractional stride convolution)。

正常卷积:

    假设图像尺寸为 4×4,卷积核为 3×3,padding=0,stride=1;
    图像:I_{16*1};卷积核:K_{4*16};输出: O_{4*1}=K_{4*16}*I_{16*1}

转置卷积:

    假设图像尺寸为 2×2 ,卷积核为 3×3,padding=0,stride=1;
    图像:I_{4*1};卷积核: K_{16*4};输出: O_{16*1}=K_{16*4}*I_{4*1}

ConvTranspose1d

class torch.nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
  • in_channels (int) – Number of channels in the input image

  • out_channels (int) – Number of channels produced by the convolution

  • kernel_size (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int or tuple, optional) – dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of the input. Default: 0

  • output_padding (int or tuple, optional) – Additional size added to one side of the output shape. Default: 0

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

输出计算:

ConvTranspose2d

class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
  • in_channels (int
    ) – Number of channels in the input image

  • out_channels (int
    ) – Number of channels produced by the convolution

  • kernel_size  (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int or tuple, optional) – dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Default: 0

  • output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

 

 输出计算:

ConvTranspose3d

class torch.nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
  • in_channels (int) – Number of channels in the input image

  • out_channels (int) – Number of channels produced by the convolution

  • kernel_size  (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int or tuple, optional) – dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Default: 0

  • output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

 

输出计算:

2.6 深度可分离卷积

MobileNet中大量使用的了深度可分离卷积(Depth-wise Separable Convolutions),主要起到降低参数量,增加非线性,跨通道信息融合的作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/190227.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux Makefile的认识及CMake的使用

1 Makefile的作用 Makefile 指的是一个叫 Makefile 的文件,里面提前写了一些指令。每次要自动化的完成一个比较复杂项目的自动编译用的时候,就在命令行输入“make”命令Makefile使用。使用Makefile可以 “智能” 的知道: 1 哪些文件需要先进行编译。 2 当某一文件在某次mak…

Blast中文手册(4)

Extracting data from BLAST databases with blastdbcmd(用blastdbcmd从BLAST数据库中提取数据) Created: June 23, 2008; Updated: January 7, 2021. Extract lowercase masked FASTA from a BLAST database with masking information(从具有掩码信息的BLAST数据库中提取小写掩…

知识管理平台Confluence:win10安装confluence

文章目录 介绍主要功能 安装教程安装java运行平台JRE安装数据库Postgresql在Postgresql创建confluence使用的数据库创建数据库用户创建数据库 安装confluence注册confluence启动confluence 参考链接 介绍 Confluence 是由澳大利亚软件公司 Atlassian 开发的企业协作平台。它提…

2023.11.27 关于 Mybatis 增删改操作

目录 引言 增加用户操作 删除用户操作 修改用户操作 阅读下述文章之间 建议点击下方链接先了解 MyBatis 的创建与使用 MyBatis 的创建与使用 建议点击下方链接先了解 单元测试 的创建与使用 Spring Boot 单元测试的创建与使用 引言 为了方便下文实现增、删、改操作我们先…

推荐3个完美替代 Navicat 的工具

现在企业,mysql数据库用的比较多,mysql数据库客户端的需求也就比较大,navicat就被大家所熟知。 这个工具,确实好用,功能也非常强大,但是,它的强大,是需要付费,或者用一些…

STM32内部温度传感器使用方法详解

STM32内部温度传感器使用方法详解 前言 STM32内部集成了一个片上温度传感器,可以用来测量MCU及周围的温度。测量范围:-40~125,精度1.5℃。虽然精度不高,但在某些应用场景下是够了的,相比于外部接入传感器&#xff0c…

最新Graphviz python安装教程及使用

文章目录 Graphviz 安装python安装graphviz库 Graphviz 安装 Graphviz是一个独立的软件,在用python的pip下载之前,需要先下载软件。 网址:https://graphviz.org/download/ 找到合适的版本进行下载安装。记住自己的安装位置,完…

Linux - 进程间通信

进程通信 初步理解进程通信 所谓进程之间的通信,就是两个进程之间的 数据层面的交互。 我们之前说过,父子进程之间是有一些数据通信的,子进程可以看到一些父进程 允许 子进程访问的数据,比如 父进程的 环境变量,子…

用通俗的方法讲解:大模型微调训练详细说明(附理论+实践代码)

本文内容如下 介绍了大模型训练的微调方法,包括prompt tuning、prefix tuning、LoRA、p-tuning和AdaLoRA等。 介绍了使用deepspeed和LoRA进行大模型训练的相关代码。 给出了petals的介绍,它可以将模型划分为多个块,每个用户的机器负责其中一…

InsCode实践分享

在当今信息爆炸的时代,如何从海量信息中脱颖而出,获取更多的关注和认可,成为了许多人的共同追求。作为知乎平台上的优质用户,我愿意分享一些自己的经验和技巧,帮助大家更好地运用InsCode,实现个人成长和进步…

【爬虫逆向分析实战】某笔登录算法分析——本地替换分析法

前言 作者最近在做一个收集粉币的项目,可以用来干嘛这里就不展开了😁,需要进行登录换算token从而达到监控收集的作用,手机抓包发现他是通过APP进行计算之后再请求接口的,通过官网分析可能要比APP逆向方便多&#xff0…

01-使用Git操作本地库,如初始化本地库,提交工作区文件到暂存区和本地库,查看版本信息,版本切换命令等

Git的使用 概述 Git是一个分布式版本控制工具, 通常用来管理项目中的源代码文件(Java类、xml文件、html页面等)进行管理,在软件开发过程中被广泛使用 Git可以记录文件修改的历史记录并形成备份从而实现代码回溯, 版本切换, 多人协作, 远程备份的功能Git具有廉价的本地库,方便…

开源图床Qchan本地部署远程访问,轻松打造个人专属轻量级图床

文章目录 前言1. Qchan网站搭建1.1 Qchan下载和安装1.2 Qchan网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar云端设置2.2 Cpolar本地设置 3. 公网访问测试总结 前言 图床作为云存储的一项重要应用场景,在大量开发人员的努力下,已经开发出大…

如果你想成为一名提示词工程师(Prompt Engineer),这款工具你不能错过

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版,欢迎购买。点击进入详情 前言 我们知道,如果想要通过AI得到更好更精确的答案,那么提示词Prompt的好坏至关重要。 因此,提示词工程师这个岗位应运而出。…

第一节:认识微服务

一、微服务技术对比 Dubbo SpringCloudSpringCloudAlibaba注册中心zookeeper、Redis Eureka、ConsulNacos、Eureka服务远程调用Dubbo协议Feign(http协议)Dubbo、Feign配置中心无SpringCloudGateway、ZuulSpringCloudConfig、Nacos服务网…

qemu网络通信

TAP(官网参考地址) TAP,即Tunneling traffic access point,是一种在Linux上使用的虚拟网卡技术,它可以为应用程序提供安全的网络连接。可以利用TAP搭建桥接网络,bridge两端分别为host和qemu虚拟机。 安装…

力扣 790. 多米诺和托米诺平铺(一维dp)

题目描述: 有两种形状的瓷砖:一种是 2 x 1 的多米诺形,另一种是形如 "L" 的托米诺形。两种形状都可以旋转。 给定整数 n ,返回可以平铺 2 x n 的面板的方法的数量。返回对 109 7 取模 的值。 平铺指的是每个正方形都…

具有标记和笔记功能的文件管理器TagSpaces(续)

熟悉老苏的读者都知道,老苏通常只是推荐软件,并简单介绍如何运行它们,而具体的功能则需要读者自行研究。这种方式让老苏能够在工作之余,还能保持每周发布 4 篇的更新。 然而,这种方式也存在明显的缺点。由于老苏没有深…

通义千问 Qwen-7B-Chat-Int4 模型本地化部署

如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。 以本项目中默认使用的 LLM 模型 THUDM/ChatGLM2-6B 与 Embedding 模型 moka-ai/m3e-base 为例: 下载模型…

WordPress采集器自动采集发布的工具

WordPress作为最受欢迎的内容管理系统之一,其强大的功能和灵活性使其成为许多网站、博客和电子商务平台的首选。WordPress采集器自动采集发布内置采集规则是一项备受关注的功能,让用户可以轻松收集并发布内容。WordPress采集器自动采集发布内置采集规则的…