贝叶斯网络 (期末复习)

文章目录

  • 贝叶斯网络(概率图模型)
    • 定义
    • 主要考点
    • 例题
      • - 要求画出贝叶斯网络图
      • - 计算各节点的条件概率表
      • - 计算概率
      • -分析独立性

贝叶斯网络(概率图模型)

定义

一种简单的用于表示变量之间条件独立性有向无环图(DAG)。

主要考点

  • 给出一定表述,要求画出贝叶斯网络图
  • 给出每个节点的条件概率表
  • 使用贝叶斯网络计算概率
  • 分析贝叶斯网络的独立性

例题

- 要求画出贝叶斯网络图

臭鸡蛋(E)或灾难后动物的尸体(M)都会发出一种奇怪的臭味(S),灾难也可能导致海水沸腾(B)。


STEP1 先找出原因变量

E、M能导致S,所以E和M是原因变量,M也能导致B;因此由题目可以总结出E和M为原因变量,考虑首先把它们加入图中;

STEP2 依次把变量加入图中

首先加入E,然后加入M,E、M之间没有交互关系,无连接;
再加入S,E和M都能导致S,因此E和M都是S的父节点;
最后加入B,只有M能导致B,因此M作为B的父节点;
最后得出的贝叶斯网络图如下:
在这里插入图片描述

- 计算各节点的条件概率表

给定一定的数据集以及对应的贝叶斯网络,求各节点对应的条件概率表。

在这里插入图片描述

在这里插入图片描述


STEP1 首先处理无父节点的结点

  • 对于行车里程,有高、低两种情况,概率各为0.5和0.5
    在这里插入图片描述
  • 对于空调,有可用和不可用两种情况,概率都为0.5
    在这里插入图片描述

STEP2 再处理有父节点的结点

  • 对于引擎,有一个父节点“行车里程”,因此条件概率表有四行
    在这里插入图片描述
  • 对于车的价值,有两个父节点,引擎和空调,因此有八行
    在这里插入图片描述

- 计算概率

在上一题的基础上计算P(引擎=差,空调=不可用)

P(引擎=差,空调=不可用)=∑αβ P(引擎=差,空调=不可用,行车里程=α,车价=β)
=∑αβ P(车价=β│引擎=差,空调=不可用)P(引擎=差 | 行车里程=α)P(行车里程=α)P(空调=不可用)=0.1453

臭鸡蛋(E)或灾难后动物的尸体(M)都会发出一种奇怪的臭味(S),灾难也可能导致海水沸腾(B)。
假定该表述的各条件概率表由下表所示,请计算出以下概率

在这里插入图片描述


1、联合概率 P(-e,-s,-m,-b)

P(-e,-s,-m,-b) = P(-e)P(-m)P(-s|-e,-m)P(-b|-m) = 0.6×0.9×0.9×0.9 = 0.44

2、海水沸腾的概率 P(+b)

P(+b) = P(+b|+m)P(-m) + P(+b|-m)P(-m) = 1×0.1+0.1×0.9 = 0.19

3、在海水沸腾的条件下,动物尸体出现的概率 P(+m|+b)

P(+m|+b) = P(+b|+m)P(+m) / P(+b) = (1×0.1) / 0.19 = 0.53

4、在奇怪的臭味,海水沸腾与臭鸡蛋出现的条件下,动物尸体出现的概率 P(+m|+s,+b,+e)

分子部分:
P(+e,+s,+m,+b) = P(+e)P(+m)P(+s|+e,+m)P(+b|+m) = 0.4×0.1×1.0×1.0 = 0.04

分母部分

P(+s,+b,+e) = P(+e)P(+m)P(+s|+e,+m)P(+b|+m) + P(+e)P(-m)P(+s|+e,-m)P(+b|-m) = 0.4×0.1×1.0×1.0 + 0.4×0.9×0.8×0.1 = 0.0688

所以P(+m|+s,+b,+e) = 0.04/0.0688 = 0.58

-分析独立性

考虑下图所示的贝叶斯网络,判断以下表述是否正确在这里插入图片描述


在做题之前讲一下如何判断独立性,有以下五个步骤

  • 根据原始概率图,构建包括表达式中包含的变量以及这些变量的祖先节点的图;(这一步通常可以省略,看题目给出的图即可)
  • 若两个节点有同一个子节点,连接这两个节点;(若一个变量的节点有多个父节点,则分别链接每一对父节点)
  • 去掉图中所有的路径方向,将有向图变成无向图;
  • 从图中删除需要判断的概率表达式中作为条件的变量,以及和它们相连的路径;
  • 最后一步判断:若变量之间没有连接则独立,若有路径连接则不独立,若其中一个变量在上一步中被删掉了则独立。

下面我们结合五个表述来解释:
首先执行第二步,连接拥有同一个子节点的两个节点,然后第三步将有向图变为无向图(这一步因为懒就不画了)
在这里插入图片描述

1、A ⊥ ⁣ ⁣ ⁣ ⊥ \perp \!\!\! \perp B
由于该表述没有条件变量,所以第四步不用删除,我们只需判断A和B之间是否有连接,显然A和B是不独立的
在这里插入图片描述

2、A ⊥ ⁣ ⁣ ⁣ ⊥ \perp \!\!\! \perp D | {B , H}
这个表述有两个条件变量,所以我们需要删除B和H两个节点以及与它们相连的路径,变成下图
在这里插入图片描述

A和D之间没有连接,所以是独立的

3、G ⊥ ⁣ ⁣ ⁣ ⊥ \perp \!\!\! \perp E | B
同理,删掉节点B和与B相连的路径,可以看到G和E之间是有连接的,所以G和E不独立
在这里插入图片描述

4、F ⊥ ⁣ ⁣ ⁣ ⊥ \perp \!\!\! \perp C | D
删掉D,F和C之间没有连接,所以F和C是独立的
在这里插入图片描述

5、C ⊥ ⁣ ⁣ ⁣ ⊥ \perp \!\!\! \perp H | G
删掉G,C和H之间没有连接,所以C和H是独立的
在这里插入图片描述

PS:但是这种方法好像有点问题,等我考完另一门试再来试一下另一种方法

参考文章:
https://zhuanlan.zhihu.com/p/436214290
https://zhuanlan.zhihu.com/p/274314301

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/190118.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一线大厂Redis高并发缓存架构(待完善)

场景1:秒杀库存场景, 10000人抢100个商品 如果用普通的分布式锁实现, 最后抢到的人,要等前面99个人抢完 优化方案:可用分段锁, 降低锁的粒度, 比如1-10库存用锁product:101_1,11-20库存用锁pr…

MySQL -DDL 及表类型

DDL 创建数据库 CREATE DATABASE [IF NOT EXISTS] db_name [create_specification [, create_specification] ...] create_specification:[DEFAULT] CHARACTER SET charset_name [DEFAULT] COLLATE collation_name 1.CHARACTER SET&#xff1a…

PT读spef报PARA-006如何解决?

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 There are multiple causes that can trigger PARA-006 errors. Here is a checklist. 1) SPEF reading order Functionally, the parasitic files can be read in any order. For best stitching…

acwing算法基础之动态规划--数位统计DP、状态压缩DP、树形DP和记忆化搜索

目录 1 基础知识2 模板3 工程化 1 基础知识 暂无。。。 2 模板 暂无。。。 3 工程化 题目1:求a~b中数字0、数字1、…、数字9出现的次数。 思路:先计算1~a中每位数字出现的次数,然后计算1~b-1中每位数字出现的次数,两个相减即…

C++基础 -29- 友元类

友元类格式 friend class person2;类的友元类访问类的全部成员 #include "iostream"using namespace std;class person1 { public:int a;protected:int b;private:int c;friend class person2; };class person2 { public:void test(){person1 a;a.a 100;a.b 200…

校园局域网规划与设计(cisco仿真模拟)

摘 要 随着网络技术的发展,校园网的建设已经进入到一个蓬勃发展的阶段。校园网的建成和使用,对于提高教学和科研的质量、改善教学和科研条件、加快学校的信息化进程,开展多媒体教学与研究以及使教学多出人才、科研多出成果有着十分重要而深远…

05-建造者模式-C语言实现

UML类图&#xff1a; 代码实现&#xff1a; #include <stdio.h> #include <stdlib.h>// 产品类 typedef struct {char* part1;char* part2;char* part3; } Product;// 抽象建造者类 typedef struct {void (*buildPart1)(void*, const char*);void (*buildPart2)(v…

leetCode 494.递增子序列 + 回溯算法 + 图解 + 笔记

给你一个整数数组 nums &#xff0c;找出并返回所有该数组中不同的递增子序列&#xff0c;递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。 数组中可能含有重复元素&#xff0c;如出现两个整数相等&#xff0c;也可以视作递增序列的一种特殊情况。 示例 1&#…

Python项目管理利器poetry我愿称之为神!

MongoDB是一种流行的NoSQL数据库&#xff0c;它以灵活的文档结构存储数据。MongoDB 提供了可用于 32 位和 64 位系统的预编译二进制包&#xff0c;你可以从MongoDB官网下载安装&#xff0c;MongoDB 预编译二进制包下载地址&#xff1a; https://www.mongodb.com/try/download/…

【Linux】信号概念和信号的产生

文章目录 一、什么是信号&#xff1f;1.signal系统调用2.从硬件解析键盘数据如何输入给内核3.同步和异步 二、信号的产生1.键盘组合键2. kill命令3.系统调用接口3.1kill3.2 raise3.3abort 4.异常5.软件条件 重谈core dump标志位 一、什么是信号&#xff1f; 以日常为例&#x…

Elasticsearch:么是向量嵌入?

向量嵌入定义 向量嵌入 (vector embeddings) 是一种将单词、句子和其他数据转换为捕获其含义和关系的数字的方法。 它们将不同的数据类型表示为多维空间中的点&#xff0c;其中相似的数据点更紧密地聚集在一起。 这些数字表示可以帮助机器更有效地理解和处理这些数据。 单词和…

VS安装QT VS Tools编译无法通过

场景&#xff1a; 项目拷贝到虚拟机内部后&#xff0c;配置好相关环境后无法编译&#xff0c;安装QT VS Tools后依旧无法编译&#xff0c;查找资料网上说的是QT工具版本不一致导致的&#xff0c;但反复试了几个版本后依旧无法编译通过。错误信息如下&#xff1a; C:\Users\Ad…

OpenTelemetry系列 - 第1篇 相关概念

目录 一、背景二、概念2.1 Traces & Span2.2 Metrics2.3 Logs2.4 Baggage2.5 OTel2.6 OTLP2.7 Resources2.8 Instrumentation Scope2.9 Sampling 三、核心组件 一、背景 OpenTelemetry是一个可观察性框架和工具包&#xff0c;旨在创建和管理遥测数据&#xff0c;如跟踪、指…

Monocle 3 | 太牛了!单细胞必学R包!~(五)(差异分析之聚类比较与模块鉴定)

1写在前面 准备出去玩耍了&#xff0c;今天就不废话了&#xff0c;直接上主题吧。&#x1f973; monocle3做差异分析也是牛的一米&#xff01;~&#x1f33e; 2用到的包 rm(list ls())library(tidyverse)library(monocle3) 3示例数据 我们还是载入之前用过的一个数据集吧。&am…

HarmonyOs 4 (三) ArkTS语言

目录 一 认识ArkTs语言1.1 ArkTs1.2 基本结构 二 基本语法2.1 声明式UI2.1.1 创建组件2.1.1.1 无参数2.1.1.2 有参数2.1.1.3 组件样式2.1.1.4 组件方法2.1.1.5 组件嵌套 2.1.2 自定义组件2.1.2.1 基本结构2.1.2.2 成员函数/变量2.1.2.3 自定义组件的参数规定2.1.2.4 Build函数2…

高效转码工具Compressor for Mac,让视频处理更轻松

在现如今的数字时代&#xff0c;视频内容已经成为人们生活中不可或缺的一部分。无论是在社交媒体上分享生活点滴&#xff0c;还是在工作中制作专业的营销视频&#xff0c;我们都希望能够以高质量、高效率地处理和传输视频文件。而Compressor for Mac作为一款强大的视频转码工具…

vivado实现分析与收敛技巧6-策略建议

典型时序收敛策略需运行大量实现策略并选取其中最佳的策略以供在实验室内应用。 ML 策略同样可选 &#xff0c; 且只需您运行3 项策略即可达成类似的 QoR 收益。这些策略使用机器学习来检验布线后设计的各项功能特性 &#xff0c; 以便预测相同设计上不同策略的性能。在 repo…

unity3d c#代码变更文本颜色,可选多参数,委托invoke延迟调用函数

[SerializeField] private Text warning; Color color ;warningOpen("注册成功", closeTime: 1.5f);warningOpen("登录成功", "green", 1.5f);public void warningOpen( string warn, string tmp"red", float closeTime5f ){warnin…

常用装备生产ERP有哪几种?有哪些作用

装备生产业务涉及原材料采购、车间排产、班组生产评估、派工单、接单报价、委外发料、库存盘点、设备台账、图纸设计等诸多环节&#xff0c;而各环节数据的共享问题普遍存在于装备生产企业内部&#xff0c;同时也直接影响企业的生产效率和整体效益等。 企业外部环境的变化和行…

探索意义的深度:自然语言处理中的语义相似性

一、说明 语义相似度&#xff0c;反应出计算机对相同内容&#xff0c;不同表达的识别能力。因而识别范围至少是个句子&#xff0c;最大范围就是文章&#xff0c;其研究方法有所区别。本文将按照目前高手的研究成绩&#xff0c;作为谈资介绍给诸位。 二、语义相似度简介 自然语言…