LeetCode刷题---汉诺塔问题

 

个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客


前言:这个专栏主要讲述递归递归、搜索与回溯算法,所以下面题目主要也是这些算法做的  

我讲述题目会把讲解部分分为3个部分:
1、题目解析

2、算法原理思路讲解

3、代码实现


 一、汉诺塔问题

题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

题目:

        在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制:
(1) 每次只能移动一个盘子;
(2) 盘子只能从柱子顶端滑出移到下一根柱子;
(3) 盘子只能叠在比它大的盘子上。

请编写程序,用栈将所有盘子从第一根柱子移到最后一根柱子。

你需要原地修改栈。

 

示例1:

 输入:A = [2, 1, 0], B = [], C = []
 输出:C = [2, 1, 0]

示例2:

 输入:A = [1, 0], B = [], C = []
 输出:C = [1, 0]

提示:

  1. A中盘子的数目不大于14个。

 

二、解法 

题目解析

题目描述说有3根柱子,我们我们分别以A,B,C命名3根柱子。初始应是如下图:

让我们编写程序,让盘子从第一根柱子移到最后一根柱子

 

算法原理思路讲解 

如何去写一个递归

1、先找到相同的子问题                                   函数头的设计

2、只关心某一个子问题是如何解决的             函数体的书写

3、注意一下递归函数的出口                            终止条件           

 先找到相同的子问题 

我们观察下图:

当n=1时,我们只用将A柱子的盘子,移到C柱子即可

当n=2时,我们将A柱子上面的盘子移到B柱子,再将A柱子下面的盘移到C柱子,再将B柱子的盘子移到C柱子

当n=3时,我们将A柱子除了最后一个盘子移到B柱子,再将A柱子下面的最后一盘移到C柱子,再将B柱子的盘子移到C柱子

当n=n时,我们将A柱子(n-1)个盘子移到B柱子,再将A柱子下面的最后一盘移到C柱子,再将B柱子的(n-1)个盘子移到C柱子

 

函数头的设计

我们设计4个变量

   void dfs(vector<int>& x, vector<int>& y, vector<int>& z,int n)//通过y柱子将x柱子的盘子移到z柱子,并且使用n来控制

函数体的书写

1、我们将A柱子(n-1)个盘子移到B柱子

dfs(a,b,c,n-1)

2、再将A柱子下面的最后一盘移到C柱子

c.push_back(a.back());
a.pop_back();

3、再将B柱子的(n-1)个盘子移到C柱子

dfs(b,a,c,n-1);

终止条件   

当A只有一个盘子时候,就终止了

        if (n == 1){c.push_back(a.back());a.pop_back();return ;}

以上思路就讲解完了,大家可以先自己先做一下


代码实现 

class Solution {
public:void dfs(vector<int>& x, vector<int>& y, vector<int>& z,int n){if (n == 1){z.push_back(x.back());x.pop_back();return ;}dfs(x,z,y,n-1);z.push_back(x.back());x.pop_back();dfs(y,x,z,n-1);}void hanota(vector<int>& A, vector<int>& B, vector<int>& C) {int n = A.size();dfs(A,B,C,n);}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/188571.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

webGL开发虚拟展览方案

开发 WebGL 虚拟展览涉及到选择适当的工具、技术和框架&#xff0c;以及设计一个令人愉悦且互动性强的用户体验。以下是一个可能的开发方案&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.选择 Web…

【C语言】与文件有关的操作

目录 1. 前言2. 什么是文件&#xff1f;2.1 程序文件2.2 数据文件2.3 文件名 3. 二进制文件和文本文件&#xff1f;4. 文件的打开和关闭4.1 流和标准流4.1.1 流4.1.2 标准流 4.2 文件指针4.3 文件的打开和关闭 5. 文件的顺序读写5.1 顺序读写函数介绍5.2 对比一组函数 6. 文件的…

对 Vision Transformers 及其基于 CNN-Transformer 的变体的综述

A survey of the Vision Transformers and its CNN-Transformer based Variants 摘要1、介绍2、vit的基本概念2.1 patch嵌入2.2 位置嵌入2.2.1 绝对位置嵌入(APE)2.2.2 相对位置嵌入(RPE)2.2.3卷积位置嵌入(CPE) 2.3 注意力机制2.3.1多头自我注意(MSA) 2.4 Transformer层2.4.1 …

记录一个奇怪的文件上传问题

项目是在企业微信内打开的webview&#xff0c;bug出现在一个更新数据的接口&#xff0c;参数为FormData对象&#xff0c;包含图片文件 ios&#xff1a;没问题&#xff0c;一切正常 安卓&#xff1a; 企业微信内打开&#xff0c;当FormData对象中包含一张图片文件&#xff0c…

【Python标准库】json

1.json库是用来做什么的&#xff1f; 完全独立于程序语言的轻量文本数据交换格式&#xff0c;用来生成和解析json数据格式的库 2.json的2种数据结构 第一种&#xff1a;键值对 语法&#xff1a;{"key":value,,,,}第二种&#xff1a;有序列表 3.json和python的…

indexOf与includes区别

判断字符串或者数组中是否存在对应元素 indexOf&#xff1a; 查找字符串中某个字符或字符串下表的位置&#xff0c;找到返回第一次出现的下标&#xff0c; 未找到返回-1 // 不传递第二个参数: 默认从0开始 [1,2,3,4,5].indexOf(3); // 查找字符3&#xff0c;找到返回3所在的下…

深度学习-学习笔记记录

1、点云语义分割方法分类 分为5类&#xff1a;点、二维投影、体素、融合、集成 2、融合与集成的区别 融合&#xff1a; 概念&#xff1a;主要是将不同来源、类型的模型&#xff0c;例如深度学习、传统机器学习等&#xff0c;的结果或特征进行结合&#xff0c;以得到一个更好的模…

js 搜索记录

背景&#xff1a; 移动端的搜索记录&#xff0c;不可能通过调取接口来记录瑟&#xff0c;所以通过在某某.js一个文件定义和处理逻辑。 代码&#xff1a; //某某.js var yumingSearch {init: function () {initF7.GloblalF7.onPageInit("yumingSearch", function …

c++的set容器和map容器

set容器 #define _CRT_SECURE_NO_WARNINGS #include<iostream> #include<string> #include<set> #include<algorithm> using namespace std; //set不给有重复的值&#xff0c;但是插入相同的数值不会报错&#xff0c;只是不会插入进去 void test01() …

直方图均衡化实现

一 直方图均衡化的概念 直方图均衡化(Histogram Equalization)是一种**增强图像对比度**(Image Contrast)的方法&#xff0c;其主要思想是将一副图像的**灰度直方图分布**通过**累积分布函数**变成**近似均匀分布**&#xff08;直观上在某个灰阶范围内像素值保持一致 &#xf…

2023年12月02日新闻简报(国内国际)

新闻简报 每天三分钟&#xff0c;朝闻天下事。今天是&#xff1a;2023年12月02日&#xff0c;星期六&#xff0c;农历十月廿十&#xff0c;祝工作愉快&#xff0c;身体健康&#xff0c;生活喜乐&#xff1a;&#xff1a; 国内新闻 1、商务部&#xff1a;对原产于澳大利亚的进…

【机器视觉技术栈】——工业相机

机器视觉常用部件 工业相机镜头光源 光源突出特征 **相机&#xff1a;**2D&#xff08;面阵相机、线阵相机&#xff09;、3D **镜头&#xff1a;**远心镜头 光源&#xff1a; 机器视觉系列 工业相机基础知识和选型 https://zhuanlan.zhihu.com/p/628519969 工业镜头基础…

【涂鸦T2-U】2、添加光感bh1750

文章目录 前言一、基础介绍二、电路图2.1 电路图12.2 电路图2——实际采用 三、代码四、编译五、刷机六、测试结果小结 前言 本章介绍如何在涂鸦T2-U开发板上添加光感bh1750驱动并实现定时读取数据。 一、基础介绍 BH1750( GY-302 )光照传感器 这篇文章有bh1750的基础介绍。…

八大插入算法(有注释)

直接插入排序 //直接插入排序 void InsertSortingDirectly(int* nums,int numsSize){int j0;for(int i1;i<numsSize-1;i){//定义一个中间变量保存当前要插入的值int tempnums[i];//在前面已排好序的序列中&#xff0c;找到合适的位置插入for(ji-1;j>0;j--){if(nums[j]&g…

滴滴面试:什么是数据库事务?InnoDB一次事务的执行过程?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如滴滴、阿里、极兔、有赞、shein 希音、百度、网易的面试资格&#xff0c;遇到很多很重要的面试题&#xff1a; 什么是数据库事务&#xff1f; 说说 InnoDB一次事务的执行过…

Unity中PlayerPrefs在PC上存储位置总结

编辑器下和EXE存储位置是不同的&#xff0c;这也不难理解&#xff0c;是为了避免存储位置相同导致开发和测试冲突。 编辑器下位置&#xff1a;HKEY_CURRENT_USER\Software\Unity\UnityEditor\ExampleCompanyName\ExampleProductName EXE位置&#xff1a;HKEY_CURRENT_USER\Sof…

AES加密技术:原理与应用

一、引言 随着信息技术的飞速发展&#xff0c;数据安全已成为越来越受到重视的领域。加密技术作为保障数据安全的重要手段&#xff0c;在信息安全领域发挥着举足轻重的作用。AES&#xff08;Advanced Encryption Standard&#xff09;作为一种对称加密算法&#xff0c;自1990年…

HarmonyOS到底有哪些独特之处?你真正了解鸿蒙多少!

鸿蒙系统太炸裂了&#x1f4a5;我已经后悔了&#x1f62d;后悔没早点学习鸿蒙 HarmonyOS 概念&#xff0c;系统定位 1&#xff1a;鸿蒙系统是由华为公司自主研发的全球化开放源代码操作系统&#xff0c;它具有以下特别之处&#xff1a; 2&#xff1a;分布式架构&#xff1a;…

SQL手工注入漏洞测试(MySQL数据库-字符型)-墨者

———靶场专栏——— 声明&#xff1a;文章由作者weoptions学习或练习过程中的步骤及思路&#xff0c;非正式答案&#xff0c;仅供学习和参考。 靶场背景&#xff1a; 来源&#xff1a; 墨者学院 简介&#xff1a; 安全工程师"墨者"最近在练习SQL手工注入漏洞&#…

深入 C 语言和程序运行原理 实战项目代码在CentOS 7上编译

cat /etc/redhat-release看到操作系统的版本是CentOS Linux release 7.6.1810 (Core)&#xff0c;uname -r可以看到内核版本是3.10.0-957.21.3.el7.x86_64。 安装gtest 参考博客《使用gtest和lcov测试代码覆盖率》 wget https://github.com/google/googletest/archive/refs/…