Leetcod面试经典150题刷题记录——数组 / 字符串篇

数组 / 字符串篇

    • 1. 合并两个有序数组
      • Python3
        • 排序法
        • 双指针法
    • 2. 删除有序数组中的重复元素
    • 3. H 指数
      • Python3
        • 排序法
        • 计数排序法
        • 二分查找

有个技巧,若想熟悉语言的写法,可以照着其它语言的题解,写目标语言的代码,比如有C/C++的题解,写Python的算法,这样同时可以对比两种语言,并熟悉Python代码中API的使用,并且可以增强代码的迁移能力,语言只是一种实现的工具,不被语言束缚也是一种自由。

1. 合并两个有序数组

合并两个有序数组 - leetcode

题目描述:
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

解题思路:
(1) 排序法。将nums2添加至nums1并排序,但这样的做法未利用到nums1与nums2非递减的特性,时间复杂度是排序的时间复杂度 O ( ( m + n ) l o g 2 ( m + n ) ) O((m+n)log_2(m+n)) O((m+n)log2(m+n)),空间复杂度认为是快排的空间复杂度 O ( l o g 2 ( m + n ) ) O(log_2(m+n)) O(log2(m+n))
(2) 双指针法。新建一个数组sorted用来存储,然后将nums1指向新数组的内容,用双指针比较nums1和nums2各元素的大小,存储至sorted数组中

Python3

排序法
class Solution:def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:"""Do not return anything, modify nums1 in-place instead."""nums1[m:] = nums2nums1.sort()
双指针法
class Solution:def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:"""Do not return anything, modify nums1 in-place instead."""p1, p2 = 0,0index_bound1, index_bound2 = m-1,n-1 # 数组下标索引边界,这和长度有区别sorted = []while p1 <= index_bound1 or p2 <= index_bound2:# 1.若有某一数组下标出界,表明该数组已判断完成,应存另一数组的值if p1 > index_bound1:sorted.append(nums2[p2])p2 += 1elif p2 > index_bound2:sorted.append(nums1[p1])p1 += 1# 2.比较两数大小,存更小的,以确保是非递减序列elif (nums1[p1] <= nums2[p2]):sorted.append(nums1[p1])p1 += 1else:sorted.append(nums2[p2])p2 += 1nums1[:] = sorted

2. 删除有序数组中的重复元素

题目描述:
给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。
考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过:
更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不重要。
返回 k 。
题目归纳:
首先分析该有序数组的特点
由于数组有序,且非严格递增
故对于任意 i < j,若有nums[i] = nums[j]
则有任意i <= k <= j,nums[i] = nums[k] = nums[j]
利用上述特点,使用快慢指针进行删除重复元素

解题思路:
快慢指针法。慢指针用来指向第一个(可能)遇到重复元素的位置处,而快指针寻找新元素,当快指针找到新元素,把新元素赋值给慢指针处做替换。

class Solution:def removeDuplicates(self, nums: List[int]) -> int:slow_p = 1 # 数组若只有一个元素,则下标为0, 这样的数组中不会有重复项for fast_p in range(1, len(nums), 1):if(nums[fast_p-1] != nums[fast_p]): # 快指针找到新元素,利用了任意i <= k <= j,nums[i] = nums[k] = nums[j]特性nums[slow_p] = nums[fast_p]slow_p += 1 # slow_p的增加是有条件的,要找到不相同的元素return slow_p

3. H 指数

题目描述:
给你一个整数数组 citations ,其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数。
根据维基百科上 h 指数的定义:h 代表“高引用次数” ,一名科研人员的 h 指数是指,他(她)至少发表h 篇论文,并且每篇论文至少被引用h 次。如果该 h 有多种可能的值,h 指数是最大的那个。
题目归纳:
H-index Wiki,我想,h 指数的基本思想是:论文发的越多,不一定代表水平越高,而是发的越多,也要引用的越多才行,引用数认为是发表数认为是,即有质有量 h 指数才高,可以看出原始的 h 指数有个缺点,如果论文发的少引用的多,h 指数也不会很高,也就是有质无量的 h 指数低,无质无量无质有量自然就更低了,这里把两个量的量纲统一了,就得到了下面的图。
H-index from wiki

解题思路:
(1) 排序法。将数组citations从高到底排列,h不断增加,直到引用数 h 无法增大,则返回 h 。对应上图,就是寻找到虚线和数据分布的“分界点”,在papers(citations)坐标轴上的值。
(2) 计数排序法。

Python3

排序法

时间复杂度: O ( n l o g 2 n ) O(nlog_{2}{n}) O(nlog2n) n n n为数组citations长度
空间复杂度: O ( l o g 2 n ) O(log_{2}{n}) O(log2n) n n n为数组citations长度

class Solution:def hIndex(self, citations: List[int]) -> int:sorted_citation = sorted(citations, reverse = True)# python里可以用分号在一行中分割语句,曾经python为了阅读的简便性,抛弃了分号,现在又拿回来了,会不会有一天,这些语言来一个大一统,赋值号居然还有:=,=这两种写法,想出:=的人我很好奇他个人的精神状态h = 0; i = 0; n = len(citations)while i < n and sorted_citation[i] > h:h += 1i += 1return h
计数排序法

【排序算法】计数排序 - bilibili
计数排序是一种非比较排序,比较排序的复杂度下限是O(nlogn)已经得到过论文证明。

class Solution:def hIndex(self, citations: List[int]) -> int:# 新建并维护一个数组citation_papers,来记录当前引用次数的论文有多少篇# 对于论文i引用次数citations[i]超过论文发表数len(citations)的情况,将其按总论文发表数len(citations)计算即可,这样排序的数的大小范围就可以降低至[0,n=len(citations)]# 从而计数排序的时间复杂度,就降低至O(n)。现实中,一个学者一辈子能发表的论文数量顶天了也就百来篇,再夸张点,一千篇,不需要考虑n是无穷增长的,这点大小对计数排序是恰到好处的,因为计数排序就适合范围不大的排序。n = len(citations); H_papers = 0 # H_papers: 符合H指数的论文数citation_papers = [0] * (n+1) # 生成计数排序数组,用到了python的扩充操作,此数组下标为citation,数组内容为paper数量# 计算计数排序数组for c in citations:if c >= n:             # 引用次数超过论文发表数,引用次数按发表论文数计算citation_papers[n] += 1else:citation_papers[c] += 1# 倒序遍历for citation in range(n, -1, -1): # (-1, n] step = -1,实际上的下标范围即[0,n]H_papers += citation_papers[citation]if citation <= H_papers:return citationreturn 0
二分查找

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/188412.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS应用开发者基础认证考试(98分答案)

基于最近大家都在考这个应用开发者基础认证考试&#xff0c;因此出了一期&#xff0c;一样复制word里面搜索做&#xff0c;很快&#xff0c;当然good luck 判断题 Ability是系统调度应用的最小单元,是能够完成一个独立功能的组件。一个应用可以包含一个或多个Ability。 正确(Tr…

应用于智慧社区的AI边缘计算盒子+AI算法软硬一体化方案

据统计&#xff0c;全国大约有45W个小区&#xff0c;监控高空抛物、治理乱扔垃圾、人员管理、烟火检测、占道、人流量检测、车型检测等&#xff1b;营造社区安全等需求跟每一个参与者息息相关&#xff0c;据法院公开资料显示&#xff0c;每年有1000宗以上跟高空抛物有关的各类案…

进程与线程的区别

作者简介&#xff1a; zoro-1&#xff0c;目前大二&#xff0c;正在学习Java&#xff0c;数据结构,mysql,javaee等 作者主页&#xff1a; zoro-1的主页 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f496; 进程与线程的区别 进程线程进程与线…

HyperBDR云容灾v4.10.1发布,划重点:支持UCloud云平台自动化容灾+新增可灵活定义的备份策略

版本更新 HyperBDR云容灾v4.10.1版本来啦&#xff01; 此次更新为大家带来了多个新功能&#xff0c;下面让我们来看看具体是哪些吧~ 01 策略管理新功能&#xff1a; 多时间段限速功能&#xff1a; 更加灵活的多个时间段限速选择&#xff0c;可以在创建策略时为不同的时间段设…

数字人可以为文化传播带来什么?

近日&#xff0c;由哈萨克斯坦驻华大使馆、中国外文局文化传播中心、中关村科幻产业创新中心联合发起的中哈青年友谊数字人怡漾和苏路&#xff08;Сұлу&#xff09;正式发布。其中&#xff0c;代表中方形象的数字人怡漾&#xff0c;不仅将成为中哈青年文化交流的标志与代言…

JavaScript WebAPI(三)(详解)

这次介绍一下webAPI中的一些知识&#xff1a; 回调函数 回调函数是指 如果将函数A做为参数传递给函数B时&#xff0c;我们称函数A为回调函数 例如&#xff1a; // 立即执行函数中传递的函数是一个回调函数 (function(){ console.log("我是回调函数") })(); // …

无分模块下Mybatis官方生成器

有无分模块其实对生成器生成代码没有影响&#xff0c;只是无分模块更加好理解&#xff0c;也就是添加插件和依赖&#xff0c;指定配置文件&#xff0c;运行插件即可。 添加依赖和插件 在插件处指定配置文件位置 <dependencies><!-- MyBatis核心依赖包 --><de…

汽车行驶不同工况数据

1、内容简介 略 28-可以交流、咨询、答疑 2、内容说明 汽车行驶不同工况数据 汽车行驶不同工况数据 ECE、EUDC、FTP75、NEDC、自定义 3、仿真分析 4、参考论文 略 链接&#xff1a;https://pan.baidu.com/s/1AAJ_SlHseYpa5HAwMJlk1w 提取码&#xff1a;rvol

Visual Studio2022创建Windows服务程序

文章目录 Visual Studio2022创建Windows服务程序打开工具创建新项目创建成功重命名服务添加安装程序编写逻辑生成程序安装服务打开服务启动服务停止服务卸载服务修改项目配置重新生成安装服务启动服务 Visual Studio2022创建Windows服务程序 打开工具 创建新项目 创建成功 重命…

文件重命名不再困难:文件智能化重命名技巧,告别手动提升效率

在日常工作中&#xff0c;经常会遇到要修改文件名的场景。传统的文件重命名方法往往要手动输入新的文件名&#xff0c;不仅耗时而且容易出错。为了提高效率&#xff0c;可以采用一些智能化重命名的技巧&#xff0c;告别手动修改文件名的繁琐过程&#xff0c;让文件重命名变得更…

华为鸿蒙工程师成“热门”!最高年薪160万,只看技术不看年龄

引言&#xff1a; 今天&#xff0c;在互联网行业&#xff0c;超过30岁的工程师往往被认为是“码农”的生命周期终点。然而&#xff0c;华为鸿蒙系统的崛起&#xff0c;却再次给予了这些35岁以上的工程师们第二春的机会。国内一线互联网公司纷纷向鸿蒙系统靠拢&#xff0c;导致…

代码随想录算法训练营第五十二天【动态规划part13】 | 300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组

300.最长递增子序列 题目链接 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 求解思路 动规五部曲 1.dp数组及其下标定义&#xff1a; dp[i]表示包括i以前的以nums[i]结尾的最长递增子序列的长度 2.状态转移方程&#xff1a; 位置i的最长升序…

一文带你了解网络安全简史

网络安全简史 1. 上古时代1.1 计算机病毒的理论原型1.2 早期计算机病毒1.3 主要特点 2. 黑客时代2.1 计算机病毒的大流行2.2 知名计算机病毒2.3 主要特点 3. 黑产时代3.1 网络威胁持续升级3.2 代表性事件3.3 主要特点 4 高级威胁时代4.1 高级威胁时代到来4.2 著名的APT组织4.3 …

【note: This is an issue with the package mentioned above, not pip.】

安装gym时出现问题&#xff0c;note: This is an issue with the package mentioned above, not pip. 报错原因&#xff1a; 缺失了某些依赖模块&#xff0c;所以安装报错。 Collecting package metadata (current_repodata.json): done Solving environment: failed with in…

使用 mtcnn 和 facenet 进行人脸识别

一、前言 人脸识别目前有比较多的应用了&#xff0c;比如门禁系统&#xff0c;手机的人脸解锁等等&#xff0c;今天&#xff0c;我们也来实现一个简单的人脸识别。 二、思维导图 三、详细步骤 3.1 准备 3.1.1 facenet 权重文件下载 下载地址&#xff1a;https://drive.goo…

高等数学中的近似计算

今天来总结一下同济版高数中有关近似计算的例子&#xff0c;总的来说是如下的三种&#xff0c;有遗漏的话可以在评论区指出~ 目录 一.微分在近似计算中的应用 二.全微分在近似计算中的应用 三.函数的幂级数展开在近似计算的应用 一.微分在近似计算中的应用 本质原理是&am…

机器学习的复习笔记3-回归的细谈

一、回归的细分 机器学习中的回归问题是一种用于预测连续型输出变量的任务。回归问题的类型和特点如下&#xff1a; 线性回归&#xff08;Linear Regression&#xff09;&#xff1a;线性回归是回归问题中最简单的一种方法。它假设自变量与因变量之间存在线性关系&#xff0c…

SpringBoot+Redis获取电脑信息

获取电脑信息 测试 System.getProperties(); System: 是Java中的一个内置类&#xff0c;用于提供与系统相关的功能和信息。这个类中包含了一些静态方法和常量&#xff0c;可以让您方便地访问和操作系统级别的资源。 getProperties(): 是一个静态方法&#xff0c;它返回一个表示…

【Azure 架构师学习笔记】- Azure Databricks (1) - 环境搭建

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 前言 Databricks 已经成为了数据科学的必备工具&#xff0c;今时今日你已经很难抛开它来谈大数据&#xff0c;它常用于做复杂的ETL中的T&#xff0c; 数据分析&#xff0c;数据挖掘等&#xff0c;…

TA-Lib学习研究笔记(二)——Overlap Studies下

TA-Lib学习研究笔记&#xff08;二&#xff09;——Overlap Studies下 &#xff08;11&#xff09;SAR - Parabolic SAR 抛物线指标 函数名&#xff1a;SAR 名称&#xff1a; 抛物线指标 简介&#xff1a;抛物线转向也称停损点转向&#xff0c;是利用抛物线方式&#xff0c;随…