HTAP 还可以这么玩?丨TiDB 在 IoT 智慧园区的应用

作者:某物联网公司设施云平台负责人
用户简介:我们是一家提供全链智慧园区整体解决方案的物联网公司,致力于打造可持续发展的智慧园区。

基础设施平台简介

基础设施平台是集团一线作业人员日常工作中高度依赖的重要系统,涵盖了各类基础设施的管理、报修、保养等一系列数字化办公功能,同时实现了对基础设施、作业人员、项目成本等多种维度的精细化管理。其使命在于不断提升一线作业效率,提高业主的服务满意度。

以下为该平台手机端应用截图。工作中心页面提供了大量常用的业务功能,同时还包含了面对一线、项目、集团等多个维度的报表功能,是一个典型的 HTAP 混合负载场景。

面临的挑战

随着数据规模达到亿级别、业务规模不断扩大以及数字化需求的增加,该平台面临的挑战变得愈发严峻。在日常的业务高峰期,特别是在一些关键业务期间,如每周初、月初和月末,一线作业人员和集团运营业务部门的工作都可能受到一些影响。这主要是由于底层数据库在资源、架构和性能方面存在一些不足。

应用架构

原先采用 MySQL 数据库的主从架构来为平台提供服务(16VC/64GB),其中包括:

  • 主库存储业务数据(450GB),用于支撑应用中的绝大部分的业务功能,峰值 QPS 2500+;
  • 从库除了业务数据外,还有 ETL 转化之后的汇总数据(200GB),峰值 QPS 1000+,支撑:
    • 应用中的 BI 报表功能,集团的大屏实时展示;
    • ETL 数据计算,在业务数据基础上进行加工,并写入到汇总库中;
    • 当主库不可用时,支撑应用的高可用。

MySQL 不堪重负

  1. 在业务高峰期,主库的 CPU 使用率达到 90%,应用响应非常慢;
  2. 在业务高峰期,从库的 CPU 使用率也达到 90%,个别 BI 报表无法打开;
  3. 凌晨在从库上运行的 ETL 作业耗时非常久,有时到需要运行到第二天工作时间,严重影响 BI 报表服务。

为何引入 TiDB

在引入 TiDB 前,我们研讨了基于 MySQL 当前架构的扩容方案,将实例规格从 16VC/64G 扩展到 32VC/128G,甚至再加一个从节点,然后在应用层进行读写分离设计。

该扩容方案可以解决在并发时资源不足的问题,从而在一定程度上缓解高峰期服务响应慢的情况。然而,它并不能解决 SQL 本身执行速度较慢的问题。例如,在从库执行凌晨的 ETL 作业期间,虽然负载并不高,但是 ETL 运行时间很长。方案上还是存在一定的不足:

  1. 核心工单表 5 亿多行,扩容后,该表的查询和写入 SQL 性能仍然没有提升;
  2. BI 报表查询以及 ETL 转化作业时,涉及大量复杂的 Join/聚合计算,涵盖了多张大表,即使扩容了也还是慢;
  3. 花费成本高,同时改善空间有限:
    1. 3 倍的资源成本,从 32VC/128GB 变成 96VC/384GB;
    2. 改造成本,需要对应用代码进行读写分离的改造,随着未来该系统接入更多项目时,可能还需要投入更多精力进行分库分表的改造工作。

最终我们计划选择原生分布式数据库来解决该系统面临的问题,其中 TiDB 分布式数据库这些能力非常吸引我们:

  1. 原生分布式架构,能够彻底解决大数据量下读写性能问题;
  2. HTAP 混合负载,BI 或者 ETL 中包含大量复杂”Join/聚合“的 SQL,性能可以大幅提升;
  3. MySQL 兼容,使得应用架构和代码几乎不用调整便能完成应用的移植。

以下为 TiDB 的集群**配置(合计约 76VC)**

计算规格数量配置备注
ir3.2xlarge.438VC/32GB/本地 SSD 盘TiKV
ir3.4xlarge.4116VC/64GB/本地 SSD 盘TiFlash
c7.2xlarge.438VC/32GB/200GB(通用 SSD)TiDB
c7.xlarge.234VC/8GB/200GB(超高 IO)PD
elbv3.basic.1az1网络型(TCP/UDP) | 小型 II负载均衡

OLTP 与 OLAP 负载彻底隔离的 HTAP 架构设计

应用架构无需改动

为了实现最小成本的系统移植,我们在一套 TiDB 中同时支撑 OLTP(应用基础功能)、OLAP(BI 报表、ETL 作业)两种负载,同时确保两种负载之间互不影响,并且提供了最大的可用性保障。以下是我们针对 TiDB HTAP 架构进行的一些设计。

存储节点规划

我们将 TiKV1 和 TiKV2 规划为 OLTP 区,将 TiKV3 和 TiFlash 规划为 OLAP 区

数据 Leader 隔离

默认情况下 TiDB 中数据 Leader 的分布是随机的,而 SQL 请求默认都是发往 Leader 执行,所以默认机制下无法满足我们的隔离要求。所以我们进行了如下设计:

  1. OLTP所用到的业务数据的 leader 固定在 TiKV1/TiKV2 上

策略一: policy_eyas(业务库策略)

预期效果:数据的 Leader 在 zone1 和 zone2 上,zone3 上不会产生 Leader(只有 Follower)

   -- 创建策略create placement policy policy_eyas leader_constraints = "[-zone=zone3]"; -- 为业务库指定策略,让业务读写都发生在 TiKV 节点 1,2alter database eyas placement policy policy_eyas;

  1. 将 OLAP 中 ETL 作业产生的汇总数据的 leader 固定在 TiKV3 上

策略二:policy_bi(汇总库策略)

预期效果:数据的 Leader 只在 zone3 上,zone1 和 zone2 上只有 Follower (没有 Leader)

 -- 创建策略
create placement policy policy_bi leader_constraints="[+zone=zone3]" follower_constraints ='{"+zone=zone1": 1,"+zone=zone2": 1}';
-- 为汇总库指定策略,让汇总库上的读写都发生在 TiKV 节点 3 
alter database bi_eyas placement policy policy_bi;
alter database da_ping placement policy policy_bi;
  1. 为所有数据设置一份TiFlash副本
alter database eyas set tiflash replica 1;
alter database bi_eyas set tiflash replica 1;
alter database da_ping set tiflash replica 1;

目的:加速 BI 报表和 ETL 中复杂查询 SQL 的性能

计算隔离

我们同样也针对计算节点进行了隔离,TiDB1 和 TiDB2 两个计算节点接入负载均衡供应用节点使用,并且限制其只能访问 TiKV 上的数据(原因:应用基础功能无须使用 TiFlash)。

  config:isolation-read.engines:- tikv- tidb

对于 BI 应用和 ETL 平台,我们则是让其直连 TiDB3 计算节点。由于它们都存在大量复杂”Join/聚合“的SQL,我们希望这样的 SQL 可以通过优化器自动决定去 TiKV 或 TiFlash 引擎执行,以获得最大的性能,参数如下:

 config:isolation-read.engines:- tikv- tiflash- tidblabels.zone: zone3

注意:在 TiDB 数据库中,默认所有的读请求都是发往数据的 Leader,而在 ETL 作业中的输入基本都是查询业务库(非常复杂的 Join/聚合)、BI 报表中也有相当一部分会实时查询业务库(而业务库的数据 Leader 在 TiKV1/TiKV2 上),这样的 SQL 一旦出现将发往 TiKV1/TiKV2 上执行,此时会影响到应用核心功能。

为了避免这一问题,我们为 TiDB3 设置了一个 Label: zone3(与 TiKV3 的 Label 一致),此时便可以实现就近副本的读取(TiDB3 上即使有非常复杂的业务库的查询,也只会在 TiKV3 的 Follower 副本上或 TiFlash 上执行):

 set global tidb_replica_read = 'closest-replicas’;

使用效果:性能大幅提升

应用部分(页面端到端耗时)

  1. 应用核心功能基本优化到 1 秒内,大幅提升了一线的使用体验和作业效率;
  2. BI 报表性能大幅提升,之前打不开的报表均能快速展示,提升运营管理效率。
一级模块二级模块之前(秒)现在(秒)
首页6.530.74
服务台工单跟踪1.340.078
新建工单2.130.98
保养管理制定保养计划0.730.59
选择保养设备0.780.87
调整保养计划0.710.57
保养任务3.080.63
巡检管理巡检计划0.570.98
巡检任务1.450.34
BI**报表**平台使用评价得分6.35.51
平台使用评价得分7.785.8
人员执行数据14.284.71
集团首页38.2435.91
平台公司首页6324.5
项目首页32.1723.92
项目月度运行报告打不开105.52
平台使用评价得分打不开119
平台公司月度运行报告6360
平台使用评价得分6768.69
各评价指标排名1077.72
故障类型分析打不开6.47
个人抢单统计表5.44.25
巡检工时异常统计打不开5.36

注:一张报表包含若干条 SQL,最大的报表包含 200 多条 SQL(串行执行、页面逐一渲染展示)

ETL 作业

ETL 作业性能大幅提升,之前最久的作业执行超过 5 小时,现在的执行时间仅为 48 分钟,性能提升了 80% 以上。

作业名称之前(时:分:秒)现在(时:分:秒)降低
sr_insp_pm_hebing1:13:1900:19:4454分钟
大屏_维保0:17:1100:05:4012分钟
insp_elevator_supervision0:24:5400:03:1021分钟
insp_order3:34:4300:31:263小时
项目管理0:48:5300:06:5542分钟
实时集团考核1:00:3200:21:1440分钟
实时考核阶段20:00:5700:00:0948秒
实时计划进度分析0:13:4100:00:2712分钟
table_sr_order5:02:3900:48:284小时14分钟
Taodaytask0:31:5600:04:0827分钟
今日大屏数据0:47:1200:02:3445分钟

遇到的问题和解决办法

虽然 TiDB 高度兼容 MySQL,几乎不需要改造,但在测试过程中发现了以下两处问题。

SQL 不兼容

5 条 SQL 报错:ON condition doesn't support subqueries yet,原因为 TiDB 在 join 中不支持 on 判断使用子查询,如:

1. select t1.* from sbtest1 t1 join sbtest2 t2 on t1.id=t2.id and t2.id in (select id from sbtest3)
2. select t1.* from sbtest1 t1 join sbtest2 t2 on t1.id=t2.id and exists (select 1 from sbtest3 t3 where t3.id=t1.id)

解决办法:改写成 join 表的形式

特定写法下 SQL 性能退化

像查询列中包含 case when in subquery 这样的写法时,执行时与这个 subquery join 的时候变成了笛卡尔积,性能退化十倍以上。

解决办法:上线版本为 TiDB 6.5.0,当时通过将 case when in subquery 改写成 exists 后解决,目前该问题已经在高版本中已经修复。

总结

TiDB 自今年 3 月上线以来,性能提升非常明显。目前已经平稳运行了超过半年时间,这充分增强了我们深度使用 TiDB 的信心。未来,我们计划利用 TiDB HTAP 架构来支撑更多业务场景的需求,持续创造价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/188061.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

溜冰场电脑收银系统软件会员管理操作教程,佳易王溜冰场会员卡管理软件下载

溜冰场电脑收银系统软件会员管理操作教程,佳易王溜冰场会员卡管理软件下载 一、软件 部分功能简介: 1、会员信息登记 :可以直接使用手机号登记,也可以使用实体卡片,推荐用手机号即可。 2、会员卡类型 :可…

Python开发运维:PyMongo 连接操作 MongoDB

目录 一、理论 1.PyMongo模块 2.Mongo Shell 二、实验 1. Windows11安装MongoDB 7.0.4 2.Windows11安装MongoDB Shell 2.1.0 3.PyMongo 连接 MongoDB(无密码方式) 4.PyMongo 连接 MongoDB(有密码方式) 5.PyMongo 操作 Mo…

传教士与野人过河问题

代码模块参考文章:传教士与野人过河问题(numpy、pandas)_python过河问题_醉蕤的博客-CSDN博客 问题描述 一般的传教士和野人问题(Missionaries and Cannibals):有N个传教士和C个野人来到河边准 备渡河。…

【分布式事务】Seata 开源的分布式事务解决方案

1. 什么是seata Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。 2. seata发展历程 阿里巴巴作为国内最早一批进行应用分…

视频中的文字水印怎么去除?这三招学会轻松去视频水印

短视频与我们生活,工作息息相关,日常在在刷短视频时,下载保存后发现带有文字logo水印,如果直接拿来进行二次创作,不仅影响观看效果,平台流量还会受限制。怎么去除视频中的文字水印就成为了当下热门话题之一…

【代码】CNN-GRU-Attention基于卷积神经网络和门控循环单元网络结合注意力机制的多变量回归预测

程序名称:CNN-GRU-Attention基于卷积神经网络和门控循环单元网络结合注意力机制的多变量回归预测 实现平台:matlab 代码简介:为更准确地预测,提出基于注意力机制的CNN-GRU预测模型。该模型主要借助一维卷积单元提取数…

浅聊langchain-chatchat

个人的一点经验和总结,希望能帮助到大家。有不对的地方请留言和指正! langchain-GLM是什么 langchain-GLM是一个本地知识库应用解决方案,支持以cli、web、api方式提供以本地知识库或在线资源为知识素材的对话服务,对中英文场景对…

【AIOps】一种全新的日志异常检测评估框架:LightAD,相关成果已被软工顶会ICSE 2024录用

深度学习(DL)虽然在日志异常检测中得到了不少应用,但在实际轻量级运维模型选择中,必须仔细考虑异常检测方法与计算成本的关系。具体来说,尽管深度学习方法在日志异常检测方面取得了出色的性能,但它们通常需…

【Linux】awk 使用

awk 输出 // 打印所有列 $ awk {print $0} file // 打印第一列 $ awk {print $1} file // 打印第一和第三列 $ awk {print $1, $3} file // 打印第三列和第一列,注意先后顺序 $ cat file | awk {print $3, $1} …

探索数据之美:深入学习Plotly库的强大可视化

1. 引言: Plotly 是一个交互性可视化库,可以用于创建各种漂亮的图表和仪表板。它支持多种编程语言,包括Python、R、JavaScript。在Python中,Plotly提供了Plotly Express和Graph Objects两个主要的绘图接口。 2. Plotly库简介&am…

音乐播放器Swinsian mac功能介绍

Swinsian mac是一款音乐播放器,它的特点是轻量级、快速、易用。Swinsian支持多种音频格式,包括MP3、AAC、FLAC、WAV等。它还具有iTunes集成功能,可以自动导入iTunes音乐库中的音乐,并支持智能播放列表、标签编辑、自定义快捷键等功…

STM32Cube高效开发教程<基础篇>(十)----USART/UART通信

声明:本人水平有限,博客可能存在部分错误的地方,请广大读者谅解并向本人反馈错误。    本专栏博客参考《STM32Cube高效开发教程(基础篇)》,有意向的读者可以购买正版书籍进行学习,本书籍由王维波老师、鄢志丹老师、王钊老师倾力打造,书籍内容干货满满。 一、 功能概述…

Linux shell for jar test

Linux shell 脚本,循环解析命令行传入的所有参数,并按照不同的传参实现对不同的 java jar文件 进行测试执行。 [rootlocalhost demo]# cat connTest.sh #!/bin/bash# Linux shell for qftool java jar test# modes DEFAULT_MODE2jarfiles[1]common-1.0…

OpenAI公布CEO和董事会成员:微软加入,Ilya出局

11月30日,OpenAI在官网公布了新一届领导层和初始董事会成员:Sam Altman重新担任CEO,Mira Murati继续担任首席技术官,Greg Brockman继续担任总裁。 新的董事会成员包括:Bret Taylor(主席)、Larr…

docker部署elasticsearch+kibana+head

前言 最近,项目需要使用elasticsearch,所以就想快速安装一个使用,最开始是docker安装了7.10.1版本。 后面计划使用Java开发,发现有 RestHighLevelClient 和 Elasticsearch Java API Client两种客户端连接方式。 然后网上查阅了一…

深入剖析:知识付费系统源码解读与技术实现

知识付费系统源码是构建一个高效、稳定平台的关键。在本文中,我们将深入解析知识付费系统的源码,同时提供一些关键技术代码,以助你更好地理解和实现这一系统。 1. 知识付费系统的基本结构 首先,让我们看一下知识付费系统的基本…

论文学习-Bert 和GPT 有什么区别?

Foundation Models, Transformers, BERT and GPT 总结一下: Bert 是学习向量表征,让句子中某个词的Embedding关联到句子中其他重要词。最终学习下来,就是词向量的表征。这也是为什么Bert很容易用到下游任务,在做下游任务的时候&a…

经验分享:JMeter控制RPS

一、前言 ​ RPS (Request Per Second)一般用来衡量服务端的吞吐量,相比于并发模式,更适合用来摸底服务端的性能。我们可以通过使用 JMeter 的常数吞吐量定时器来限制每个线程的RPS。对于RPS,我们可以把他理解为我们的TPS,我们就…

数组?NO 系Vector啊!

文章目录 前言一、vector的介绍二、vector的使用2.1 vector求容量的用法2.2 vector的增删查改用法2.2.1 尾插2.2.2 尾删2.2.3 头插2.2.4 任意位置删除 2.3 vector的iterator是什么以及失效问题 三、vector的模拟实现3.1 成员变量3.2 成员函数3.2.1 构造函数3.2.2 拷贝构造3.2.3…

一起学docker系列之十五深入了解 Docker Network:构建容器间通信的桥梁

目录 1 前言2 什么是 Docker Network3 Docker Network 的不同模式3.1 桥接模式(Bridge)3.2 Host 模式3.3 无网络模式(None)3.4 容器模式(Container) 4 Docker Network 命令及用法4.1 docker network ls4.2 …