容器技术发展史,编排与容器的技术演进之路——2

目录:

  1. 容器技术发展史
    1. Jail时代
      1. 1979 年 贝尔实验室发明 chroot
      2. 2000 年 FreeBSD 4.0 发行 FreeBSD Jail
      3. 2001 年 Linux VServer 发行
      4. 2004 年 Solaris Containers 发行
    2. 云时代
      1. 2006 年 google 推出 Process Containers
      2. 2008 年 LXC 推出
      3. 2011 年 CloudFoundry 推出 Warden
      4. 2013 年 LMCTFY 启动
      5. 2013 年 Docker 推出到风靡全球
    3. 云原生时代
      1. Google &Docker 竞争
        1. 2013 年 CoreOS 发布和 Docker 由合作终止
        2. 2014 年 6 月 Google 发布开源的容器编排引擎 Kubernetes(K8S)
        3. 2014 年 12 月 CoreOS 发布开源容器引擎 Rocket(rkt)
        4. 2015 年 Docker 推出容器集群编排组件 Swarm
        5. 2015 年 6 月 Docker 成立 OCI
        6. 2015 年 7 月 Google 带头成立 CNCF
      2. k8s 成为云原生事实标准
        1. 2016 年 发布 CRI 标准
        2. 2016 年 Docker 捐献 containerd
        3. 2016 年 CRI-O 发布
        4. 2017 年 containerd 确定作为标准 CRI
  2. 编排与容器的技术演进之路
    1. DockerClient
    2. RUNC&Shim
    3. CRI-Containerd
    4. CRI-O
    5. Containerd

容器技术发展史

1.Jail时代

容器不是一个新概念或者新技术,很早就有了,只是近几年遇到了云计算,整个技术被彻底引爆了。

1979 年 贝尔实验室发明 chroot

chroot 系统调用是在 1979 年开发第 7 版 Unix 期间引入的。贝尔实验室在 Unix V7 的开发过程中,发现当一个系统软件编译和安装完成后,整个测试环境的变量就会发生改变,下一次测试需要重新配置环境信息。设计者们思考能否隔离出来一个独立的环境,来构建和搭建测试环境,所以发明了chroot,可以把一个进程的文件系统隔离起来。chroot 系统调用可以将进程及其子进程的根目录更改为文件系统中的新位置。隔离以后,该进程无法访问到外面的文件,因此这个被隔离出来的新环境像监狱一样,被命名为 Chroot Jail (监狱)。后续测试只需要把测试信息放到 Jail 中就可以完成测试了。这一进步是进程隔离的开始:为每个进程隔离文件访问。所以 chroot 可以认为是容器技术的鼻祖。

2000 年 FreeBSD 4.0 发行 FreeBSD Jail

2000 年,当时一家小型共享环境托管提供商提出了 FreeBSD Jail,以实现其服务与其客户服务之间的明确分离,以实现安全性和易于管理。每个 Jail 都是一个在主机上运行的虚拟环境,有自己的文件、进程、用户和超级用户帐户,能够为每个系统分配一个IP 地址。FreeBSD Jail 不仅仅有 chroot 的文件系统隔离,并且扩充了独立的进程和网络空间。
 

2001 年 Linux VServer 发行

与 FreeBSD Jails 一样, Linux VServer 是一种监狱机制,可以对计算机系统上的资源(文件系统、网络地址、内存)进行分区。

2004 年 Solaris Containers 发行

2004 年, Solaris Containers 的第一个公开测试版发布,结合系统资源控制和区域进行隔离,并添加了快照和克隆能力。这个时期的进程隔离技术大多以 Jail 模式为核心,基本实现了进程相关资源的隔离操作,没有更大的应用场景发展有限。

2.云时代

2006 年, Google 101 计划提出云的概念,对当前的主流开发模式产生深远的影响。也许以后我们会更多考虑如果出现比现在多 1000 倍, 10000 倍的数据量的时候,我们该如何处理?要想让”云”发挥潜能,与此相关的编程和操作就应该与使用互联网一样简单。随后,亚马逊、 IBM 等行业巨头也陆续宣布各自的“云”计划,宣告“云”技术时代的来临。云计算需要处理海量数据、超高并发、快速扩展等问题,此时不仅仅需要隔离还需要能够对资源进行控制和调配。

2006 年 google 推出 Process Containers

Process Containers(由 Google 于 2006 年推出)旨在限制、统计和隔离一组进程的资源使用(CPU、内存、磁盘 I/O、网络)。一年后它更名为“Control Groups(cgroups)”,并最终合并到 Linux 内核 2.6.24。

2008 年 LXC 推出

LXC(Linux 容器)是 Linux 容器管理器的第一个、最完整的实现。它是在 2008 年使用 cgroups 和 Linux 命名空间实现的,它可以在单个 Linux 内核上运行,不需要任何补丁。同年谷歌推出 GAE(Google App Engine),首次把开发平台当做一种服务来提供,采用云计算技术,跨越多个服务器和数据中心来虚拟化应用程序。同时 Google 在 GAE 中使用了 Borg (Kubernetes 的前身)来对容器进行编排和调度。LXC 和 Borg 其实就相当于最早的 docker 和 k8s.

2011 年 CloudFoundry 推出 Warden

2011 年启动了 Warden,早期使用 LXC,后来替换为自己的实现,直接对 Cgroups 以及 Linux Namespace 操作。开发了一个客户端-服务器模型来管理跨多个主机的容器集合,并且可以管理 cgroups、命名空间和进程生命周期。

2013 年 LMCTFY 启动

Let Me Contain That For You (LMCTFY) 于 2013 年作为 Google 容器堆栈的开源版本启动,提供 Linux 应用程序容器。应用程序可以“容器感知”,创建和管理它们自己的子容器。在谷歌开始和 docker 合作,后续转向了 docker 公司的 libcontainer, LMCTFY的于 2015 年停止。
 

2013 年 Docker 推出到风靡全球

Docker 最初是一个叫做 dotCloud 的 PaaS 服务公司的内部项目,后来该公司改名为Docker。 Docker 在初期与 Warden 类似,使用的也是 LXC,之后才开始采用自己开发的 libcontainer 来替代 LXC,它是将应用程序及其依赖打包到几乎可以在任何服务器上运行的容器的工具。与其他只做容器的项目不同的是, Docker 引入了一整套管理容器的生态系统,这包括高效、分层的容器镜像模型、全局和本地的容器注册库、清晰的 REST API、命令行等等。Docker 为提供了一整套的解决方案,不仅解决了容器化问题,而且解决了分发问题,很快被各大厂商选择变成了云基础设施,厂商围绕 Docker 也开始了生态建设.

3.云原生时代

Google &Docker 竞争
2013 年 CoreOS 发布和 Docker 由合作终止

技术革命带来新的市场机遇, CoreOS 也是其中的一员,在容器生态圈中贴有标签:专为容器设计的操作系统 CoreOS。作为互补, CoreOS+Docker 曾经也是容器部署的灵魂伴侣。 CoreOS 为 Docker 的推广和源码社区都做出了巨大的贡献。Docker 生态扩张,与最开始是“一个简单的基础单元”不同, Docker 也在通过开发或收购逐步完善容器云平台的各种组件,准备打造自己的生态圈,而这与 CoreOS 的布局有直接竞争关系。

2014 年 6 月 Google 发布开源的容器编排引擎 Kubernetes(K8S)

容器只是解决了容器化,分发问题,但是一个软件的网络问题、负载均衡问题、监控、部署、更新、镜像管理、发布等很多问题并没有有效的解决。Google 内部调度系统 Borg 已经拥有 10 多年的使用容器经验,在 2014 年 6 月推出了开源的 K8S,可以支持对容器的编排和管理,完成生态的闭环。同年 7 月,微软、 Red Hat、 IBM、 Docker、 CoreOS、 Mesosphere 和 Saltstack 等
公司,相继加入 K8S。之后的一年内, VMware、 HP、 Intel 等公司,也陆续加入。

2014 年 12 月 CoreOS 发布开源容器引擎 Rocket(rkt)

2014 年底, CoreOS 正式发布了 CoreOS 的开源容器引擎 Rocket(简称 rkt),和Docker 正式分开发展。 Google 于 2015 年 4 月领投 CoreOS 1200 万美元,而CoreOS 也发布了 Tectonic,成为首个支持企业版本 kubernetes 的公司。从此,容器江湖分为两大阵营, Google 派系和 Docker 派系。

2015 年 Docker 推出容器集群编排组件 Swarm


在 Docker 1.12 及更高版本中, Swarm 模式与 Docker 引擎集成,为 Docker 容器提供原生集群管理功能。两大派系的竞争愈演愈烈,行业标准的诉求越来越强烈。

2015 年 6 月 Docker 成立 OCI

Docker 公司在容器运行因为高速迭代导致变更频繁,影响较大。2015 年 6 月 22 日,由 Docker 公司牵头, CoreOS、 Google、 RedHat 等公司共同宣布, Docker 公司将 Libcontainer 捐出,并改名为 RunC 项目,交由一个完全中立的基金会管理,然后以 RunC 为依据,大家共同制定一套容器和镜像的标准和规范。RUNC 的本质就是可以不通过 Docker Damon 直接运行容器。规范就是 OCI,旨在“制定并维护容器镜像格式和容器运行时的正式规范(OCISpecifications) ”。其核心产出是 OCI Runtime Spec(容器运行时规范)、 OCI ImageSpec(镜像格式规范)、 OCI Distribution Spec(镜像分发规范)。所以 OCI 组织解决的是容器的构建、分发和运行问题。
社区们期望通过标准来约束 Docker 公司的话语权,不过 Docker 公司并没有积极推动OCI 的发展,而且 OCI 也无法影响 Docker 的地位,因为 Docker 已经是事实的容器标准。Google 和 RedHat 等公司将方向调转到容器上面的平台层。

2015 年 7 月 Google 带头成立 CNCF

Google 联合 Linux 基金会成立 CNCF (Cloud Native Computing Foundation)云原生计算基金会。旨在构建云原生基础设施。 K8S 是第一个纳入进来的项目,像后续有名的监控设施 Prometheus,配置设施 ETCD 都加入进来。 CNCF 组织解决的是应用管理及容器编排问题。和 OCI 共同制定了一系列行业事实标准。
 

k8s 成为云原生事实标准
2016 年 发布 CRI 标准
 

Google 就和红帽主导了 CRI 标准,用于 k8s 和特定的容器运行时解耦。CRI(Container Runtime Interface 容器运行时接口)本质上就是 k8s 定义的一组与容器运行时进行交互的接口,所以只要实现了这套接口的容器运行时都可以对接 k8s。但是这个适合 Docker 还是事实标准,并 CRI 并没有话语权,但是又必须支持 Docker,所以就有了 dockershim,dockershim 的本质其实就是 k8s 对接 docker 的一个 CRI 的实现。

2016 年 Docker 捐献 containerd

containerd 作为运行时标准, Docker 从 Docker Engine 种剥离出来,捐献给 CNCF.这个时候 Google 为了将 containerd 加入到 cri 标准中,又开发了 cri-containerd,用来完成 k8s 和容器之间的交互。

2016 年 CRI-O 发布

CRI-O 可以让开发者直接从 Kubernetes 来运行容器,这意味着 Kubernetes 可以不依赖于传统的容器引擎(比如 Docker),也能够管理容器化工作负载。容器此时也回归到自己的位置,如何更好的封装云原生的程序。在 2016 年, Docker 公司宣布了一个震惊全部人的计划:放弃现有的 Swarm 项目,将容器编排和集群管理功能所有内置到 Docker 项目中。而 Kubernetes 的应对策略则是反其道而行之,开始在整个社区推动“民主化”架构,从API 到容器运行时的每一层, Kubernetes 项目都为开发者暴露出了能够扩展的插件机制,鼓励用户经过代码的方式介入到 Kubernetes 项目的每个阶段。在进入 2017 年之后,更多的厂商愿意把宝压在 K8S 上,投入到 K8S 相关生态的建设中来。这两年包括阿里云、 腾讯、百度等中国科技企业也陆续加入 CNCF,全面拥抱容器技术与云原生。Swarm 的失败后, 社区版 Docker 项目改名为 moby,将 Docker 引流到 Docker 的企业版上去,螳臂挡车。
 

2017 年 containerd 确定作为标准 CRI

2017 年各大厂商都开始拥抱 Kubernetes,亚马逊 AWS, Microsoft Azure, VMware,有的甚至抛弃了自家的产品。亚马逊网络服务(AWS)于八月份以白金会员(最高级别)加入了 CNCF。
VMware 都作为 CNCF 的白金会员注册.Docker Inc.ocker 企业版框架中添加了本地 Kubernetes 支持。 Docker 自己的 Swarm技术也借鉴了 k8s 的技术进一步发展。Kubernetes 已成了容器编排领域的绝对标准, Docker 已成容器事实的标准。

编排与容器的技术演进之路

1.DockerClient

此时 K8s 只是编排领域的一个选择,而 Docker 此时一家独大,所以 K8s 的客户端只是作为 Docker 的客户端来调用 Docker 引擎来完成服务。









 

2.RUNC&Shim

OCI 催生 runc,剥离 Docker Engine 的一家独大的情况,确保各个厂商都可以搭建自己的容器平台。 CRI 标准确立了但是 Docker 并没有接入该标准。此时催生了临时技术shim.
 

 

3.CRI-Containerd

containerd 被捐献出来,谷歌开发 cri-containerd 接入 CRI 标准。


4.CRI-O 

k8s 已经成为事实的编排标准,促使容器回归云原生本质。

5.Containerd 

containerd 实现 CRI,成为 CRI 的事实标准.

实际生产的集群采用的什么运行时组件?
以腾讯的 TKE(腾讯商用 K8S 产品)为例,支持选择 containerd 和 docker 两种模式的选择。
如何选择呢?

  • Containerd 调用链更短,组件更少,更稳定,占用节点资源更少。建议选择Containerd。
  • 以下情况还是要用 docker
    • 使用 docker build/push/save/load 等命令。
    • 调用 docker API
    •  需要 docker compose 或 docker swarm。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/187995.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】I/O多路转接技术

I/O多路转接技术 一、I/O多路转接之select1、select函数2、fd_set的相关内容3、如何在代码中高效的使用select函数4、select服务器5、select的优缺点6、select的适用场景 二、I/O多路转接之poll1、poll函数2、struct pollfd结构2、poll服务器3、poll的优缺点 三、I/O多路转接之…

【从删库到跑路 | MySQL总结篇】索引的详细使用

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【MySQL学习专栏】🎈 本专栏旨在分享学习MySQL的一点学习心得,欢迎大家在评论区讨论💌 目录 一、索引…

WPF实战项目十八(客户端):添加新增、查询、编辑功能

1、ToDoView.xmal添加引用&#xff0c;添加微软的行为类 xmlns:i"http://schemas.microsoft.com/xaml/behaviors" 2、给项目添加行为 <i:Interaction.Triggers><i:EventTrigger EventName"MouseLeftButtonUp"><i:InvokeCommandAction Com…

单车模型及其线性化

文章目录 1 单车模型2 线性化3 实现效果4 参考资料 1 单车模型 这里讨论的是以后轴为中心的单车运动学模型&#xff0c;由下式表达&#xff1a; S ˙ [ x ˙ y ˙ ψ ˙ ] [ v c o s ( ψ ) v s i n ( ψ ) v t a n ( ψ ) L ] \dot S \begin{bmatrix} \dot x\\ \dot y\\ \d…

【C++】异常抛出变量的生命周期

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。搜…

代码随想录算法训练营第三十七天 _ 贪心算法_738.单调自增的数字、968.监督二叉树

学习目标&#xff1a; 60天训练营打卡计划&#xff01; 学习内容&#xff1a; 738.单调自增的数字 听不懂的时候就到该动手了。必须要从后向前操作&#xff0c;才能把压力逐级传给最前面的这一位。入如&#xff1a;322 class Solution {// java中的String不能修改&#xf…

Web3 开发者集结赢积分顺利闭幕!全程回顾一起来看

由 TinTinLand 联合 Dataverse 、Web3Go 、Subquery 、Cregis 、Litentry、Aspecta、SpaceID、ANOME、VARA&Gear、Moonbeam、Mantle、Obelisk 等 10 余家 Web3 项目共同举办的 Web3 开发者赢积分活动已于 11 月 26 日顺利落下帷幕&#xff0c;三周精彩纷呈的活动吸引了一众…

uniapp微信小程序地图实现绘制polygon(保姆级教程 全网最全!!!)

用户需求&#xff1a;需要在填写表单信息时&#xff0c;在地图上标绘自己房屋的位置信息。 这个问题处理了很久&#xff0c;在网上也没有找到全面的相关案例&#xff0c;所以我将我的思路分享给大家&#xff0c;希望可以解决大家遇到的问题。如果大家有更好的思路&#xff0c;…

中职组网络安全-PYsystem003.img(环境+解析)

​ web安全渗透 1.通过URL访问http://靶机IP/1&#xff0c;对该页面进行渗透测试&#xff0c;将完成后返回的结果内容作为flag值提交&#xff1b; 访问该网页后发现F12被禁用&#xff0c;使用ctrlshifti查看 ctrlshifti 等效于 F12 flag{fc35fdc70d5fc69d269883a822c7a53e} …

⭐ Unity + ARKIT ARFace脸部追踪

相比之前的图像物体检测&#xff0c;这脸部检测实现起来会更加的简单。 &#xff08;1&#xff09;首先我们先在场景中的物体上添加一个AR Face Mananger组件&#xff1a; &#xff08;2&#xff09;以上組件的 Face Prefab所代表的就是脸部的模型也就是覆盖在脸部上面的投影模…

通过PS导出样条线到3DMax挤出模型

1、PS制作样条线 PS用钢笔做出路径&#xff0c;导出 把.ai文件拖入3dmax中 2、挤出模型 调整模型在中心点位置&#xff0c;导出

SCT2432QSTER,可替代LMR14030-Q1;3.8V-40V输入、3.5A、高效率同步降压型DCDC转换器、具有内部补偿功能

描述&#xff1a; SCT2432Q是3.5A的同步降压转换器&#xff0c;具有宽输入电压&#xff0c;范围从3.8V到40V&#xff0c;它集成了一个80mΩ的高压侧MOSFET和一个50mQ的低压侧MOSFET&#xff0c;SCT2432Q采用峰值电流模式控制&#xff0c;支持脉冲跳过调制(PSM)&#xff0c;具有…

0基础学习VR全景平台篇第123篇:VR视频航拍补天 - PR软件教程

上课&#xff01;全体起立~ 大家好&#xff0c;欢迎观看蛙色官方系列全景摄影课程&#xff01; 嗨&#xff0c;大家好&#xff0c;今天我们来介绍【航拍VR视频补天】。之前已经教给了大家如何处理航拍图片的补天&#xff0c;肯定有很多小伙伴也在好奇&#xff0c;航拍的VR视频…

深度学习(一):Pytorch之YOLOv8目标检测

1.YOLOv8 2.模型详解 2.1模型结构设计 和YOLOv5对比&#xff1a; 主要的模块&#xff1a; ConvSPPFBottleneckConcatUpsampleC2f Backbone ----->Neck------>head Backdone 1.第一个卷积层的 kernel 从 6x6 变成了 3x3 2. 所有的 C3 模块换成 C2f&#xff0c;可以发现…

UniPro集成华为云WeLink 为企业客户构建互为联接的协作平台

华为云WeLink是华为开启数字化办公体验、帮助企业实现数字化转型的实践&#xff0c;类似钉钉。UniPro的客户企业中&#xff0c;有使用WeLink作为协作工具的&#xff0c;基于客户的实际业务需求&#xff0c;UniPro实现了与WeLink集成的能力&#xff0c;以帮助客户企业丰富和扩展…

软文营销助力品牌打开市场,提升内在竞争力

当今环境下&#xff0c;企业想要通过传统营销方式打开市场可以说是难度较大&#xff0c;用户如今更偏向于好的内容&#xff0c;而软文营销正是通过好内容吸引用户&#xff0c;助力品牌打开市场&#xff0c;提升内在竞争力&#xff0c;接下来媒介盒子就从以下几个方面和大家聊聊…

库位角点检测之Centernet/CornerNet算法

1.CornerNet CornerNet 那么我们从bounding box左上角(top-left corner)看物体。视线横着的话&#xff0c;物体就在视线的下面&#xff08;那么视线所在位置为the topmost boundary of an object&#xff09;。视线竖着的话&#xff0c;物体就在视线的右边&#xff0c;那么视线…

美团20k软件测试工程师的经验分享

前言 时间真是快&#xff0c;转眼间变成打工人也有三年的时间了&#xff0c;最近几天朋友圈被各个同学的答辩刷屏了。去年自己过年回到家里&#xff0c;再回母学校就是走走瞧瞧&#xff0c;经历了可能是唯一一年的云答辩。学生时代对未来的工作充满了想象&#xff0c;一直想知…

SQL面试题,判断if的实战应用

有如下表&#xff0c;请对这张表显示那些学生的成绩为及格&#xff0c;那些为不及格 1、创建表&#xff0c;插入数据 CREATE TABLE chapter8 (id VARCHAR(255) NULL,name VARCHAR(255) NULL,class VARCHAR(255) NULL,score VARCHAR(255) NULL );INSERT INTO chapter8 (id, n…

测试面试:不明白什么是质量保障

这是我面试经常问的一个问题&#xff0c;很多人并不明白其中的区别。 如上图&#xff0c;整体的质量体系架构图相对简单&#xff0c;主要包含三个部分&#xff1a;愿景&#xff08;高质量交付&#xff0d;快、好&#xff09;、能力&#xff08;中间三层不同的能力&#xff09;和…