时间序列预测 — LSTM实现多变量多步负荷预测(Keras)

目录

1 数据处理

1.1 数据集简介

1.2 数据集处理

2 模型训练与预测

2.1 模型训练

2.2 模型多步预测

2.3 结果可视化


1 数据处理

1.1 数据集简介

实验数据集采用数据集6:澳大利亚电力负荷与价格预测数据(下载链接),包括数据集包括日期、小时、干球温度、露点温度、湿球温度、湿度、电价、电力负荷特征,时间间隔30min。

单独查看部分负荷数据,发现有较强的规律性。

1.2 数据集处理

首先检查数据的缺失值情况,通过统计数据可以看到,数据比较完整,不存在缺失值。其他异常值和数据处理可以自行处理。

# 缺失值统计
data.isnull().sum()

计划预测后一天的数据48个,将要预测的数据保留(也就是未来未知的数据),单独提取出前面训练的数据(也就是历史数据),并对数据集进行滚动划分。跟前面文章的划分方式不同,因为是多变量,特征和标签分开划分,不然后面处理会有很多问题。

# 训练数据,也就是历史数据
dataf = data.values[0:-48]
#构造数据集
def create_dataset(datasetx,datasety,timesteps=36,predict_size=6):datax=[]#构造xdatay=[]#构造yfor each in range(len(datasetx)-timesteps - predict_steps):x = datasetx[each:each+timesteps,0:6]y = datasety[each+timesteps:each+timesteps+predict_steps,0]datax.append(x)datay.append(y)return datax, datay#np.array(datax),np.array(datay)

接着设置预测的时间步、每次预测的步长、最后总的预测步长,参数可以根据需要更改。跟前面文章不同的是,这里没有滚动预测,因为没有持续的特征传入,在实际运用有特征传入时可以滚动预测。

#构造train and predict
train = dataf.copy()
timesteps = 48 #构造x,为48个数据,表示每次用前48个数据作为一段
predict_steps = 48 #构造y,为48个数据,表示用后12个数据作为一段
length = 48 #预测多步,预测48个数据,每次预测48个

接着对数据进行归一化处理,跟前面文章的处理方式不同,特征和标签分开划分,并分开进行归一化处理。

# 特征和标签分开划分
datafx = dataf[:,0:5]
datafy = dataf[:,5].reshape(25872,1)# 分开进行归一化处理
scaler1 = MinMaxScaler(feature_range=(0,1))
scaler2 = MinMaxScaler(feature_range=(0,1))
datafx = scaler1.fit_transform(datafx)
datafy = scaler2.fit_transform(datafy)

最后对这行数据集进行划分,并将数据变换为满足模型格式要求的数据。

trainx, trainy = create_dataset(datafx,datafy,timesteps, predict_steps)
trainx = np.array(trainx)
trainy = np.array(trainy)

2 模型训练与预测

2.1 模型训练

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行20个epochs的训练,每个batch包含200个样本。此时input_shape划分数据集时每个x的形状。

#lstm training
model = Sequential()
model.add(LSTM(128,input_shape=(timesteps,5),return_sequences= True))
model.add(Dropout(0.5))
model.add(LSTM(128,return_sequences=True))
#model.add(Dropout(0.3))
model.add(LSTM(64,return_sequences=False))
#model.add(Dropout(0.2))
model.add(Dense(predict_steps))
model.compile(loss="mean_squared_error",optimizer="adam")
model.fit(trainx,trainy, epochs= 20, batch_size=200)

2.2 模型多步预测

下面介绍文章中最重要,也是真正没有未来特征的情况下预测未来标签的方法。整体的思路也就是,前面通过前48个数据训练后面的48个未来数据,预测时取出前48个数据预测未来的48个未来数据。这里与单变量预测不同,没有进行滚动预测,因为单变量预测的结果可以作为历史数据进行滚动,这里多变量只产生了预测值,并没有预测标签,不能进行滚动预测,在实际有数据源源不断时可以采用滚动预测。(里面的数据可以根据需求进行更改)

首先提取需要带入模型的数据,也就是预测前的timesteps行特征。

predict_xlist = []
predict_xlist.extend(dataf[dataf.shape[0]-timesteps:dataf.shape[0],0:5].tolist())
predictx = np.array(predict_xlist[-timesteps:])
predictx = np.reshape(predictx,(1,timesteps,5))#变换格式,适应LSTM模型

准备好数据后,接着进行预测,并对预测结果进行反归一化。

# 预测
lstm_predict = model.predict(predictx)
# 反归一化
lstm_predict = scaler2.inverse_transform(lstm_predict)
# 提取预测值,方便对比
predict_y = []
predict_y.extend(lstm_predict[0])

2.3 结果可视化

计算误差,并保存预测结果,并进行可视化。

#error
y_ture = np.array(data.values[-48:,5])
train_score = np.sqrt(mean_squared_error(y_ture,predict_y))
print("train score RMSE: %.2f"% train_score)
y_predict = pd.DataFrame(predict_y,columns=["predict"])
y_predict.to_csv("y_predict_LSTM.csv",index=False)
# 可视化
from itertools import cycle
cycol = cycle('bgrcmk')plt.figure(dpi=100,figsize=(14,5))
plt.plot(y_ture,c=next(cycol),markevery=5)
plt.plot(y_predict,c=next(cycol),markevery=5)
plt.legend(['y_ture','y_predict']) 
# 坐标描述
plt.xlabel('时间')
plt.ylabel('功率(kW)')
plt.show() 

最后可视化运行结果,发现预测的效果大致捕捉了趋势,预测值存在一定程度的波动。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/187862.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年中国金融租赁行业研究报告

第一章 行业概况 1.1 定义 金融租赁是一种融资方式,其中租赁公司(出租人)为企业(承租人)购买所需设备,并在租赁期内由承租人使用。承租人负责支付租金,租赁期满后有权选择退租、续租或购买设备…

(二)Tiki-taka算法(TTA)求解无人机三维路径规划研究(MATLAB)

一、无人机模型简介: 单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客 参考文献: [1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120 二、Tiki-taka算法(TTA&#xf…

数据爬取+可视化实战_告白气球_词云展示----酷狗音乐

一、前言 歌词上做文本分析,数据存储在网页上,需要爬取数据下来,词云展示在工作中也变得日益重要,接下来将数据爬虫与可视化结合起来,做个词云展示案例。 二、代码 # -*- coding:utf-8 -*- # 酷狗音乐 通过获取每首歌…

使用com组件编辑word

一个普通的窗体应用,6个button using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms; u…

项目实战之RabbitMQ冗余双写架构

🧑‍💻作者名称:DaenCode 🎤作者简介:啥技术都喜欢捣鼓捣鼓,喜欢分享技术、经验、生活。 😎人生感悟:尝尽人生百味,方知世间冷暖。 📖所属专栏:项…

将本地项目推送到github

欢迎大家到我的博客浏览。将本地项目推送到github | YinKais Blog 本地项目上传至 GitHub<!--more--> 1、进入项目根目录&#xff0c;初始化本地仓库 git init 2、创建密钥&#xff1a;创建 .ssh 文件夹&#xff0c;并进入 .ssh 文件夹 mkdir .ssh cd .ssh/ 3、生成…

关于 SLO,我们需要了解什么?

什么是 SLO&#xff1f; SLO&#xff08;Service Level Objective&#xff09;是服务质量目标的短语缩写。它通常指的是维护系统的最高级别的目标&#xff0c;或服务等级协议&#xff08;SLA&#xff09;中的服务质量目标。它能够定义客户和用户在使用软件系统时所期望的服务质…

基于ssh的盘锦河蟹销售系统

摘 要 如今&#xff0c;互联网时代的到来&#xff0c;在社会环境的带动下&#xff0c;各行各业都被科技的发展推着前进。提高了生活效率&#xff0c;越来越多行业已经实现了信息管理自动化&#xff0c;商品销售行业也不例外。如今伴随着5G互联网时代的来到&#xff0c;网上浏览…

云服务器anaconda(py39)+pytorch1.12.0(cu113)

用xshell连接ip地址&#xff0c;端口号22&#xff0c;输入用户密码 查看当前版本 conda -V conda info --envs 如果不是需要的版本&#xff0c;使用 anaconda-clean --yes rm -rf anaconda3 删除文件夹 安装anaconda 2022 10 py3.9 wget https://repo.anaconda.com/archi…

<Linux>(极简关键、省时省力)《Linux操作系统原理分析之存储管理(2)》(15)

[TOC](《Linux操作系统原理分析之存储管理&#xff08;2&#xff09;》&#xff08;15&#xff09; 5 存储管理5.4 分页存储管理5.4.1 纯分页存储管理a.页&#xff08;页面&#xff09;和物理块&#xff08;帧&#xff09;b. 页面大小c. 逻辑地址结构 5.5 存储扩充技术5.5.2 交…

用友NC 漏洞

漏洞描述 用友ERP-NC 存在目录遍历漏洞&#xff0c;攻击者可以通过目录遍历获取敏感文件信息。 fofa&#xff1a; poc&#xff1a;/NCFindWeb?serviceIPreAlertConfigService&filename 在url处拼接poc后可以看到该站点的目录和文件 访问某个文件 /NCFindWeb?serviceIPr…

【JavaScript】3.4 JavaScript在现代前端开发中的应用

文章目录 1. 用户交互2. 动态内容3. 前端路由4. API 请求总结 JavaScript 是现代前端开发的核心。无论是交互效果&#xff0c;还是复杂的前端应用&#xff0c;JavaScript 都发挥着关键作用。在本章节中&#xff0c;我们将探讨 JavaScript 在现代前端开发中的应用&#xff0c;包…

上门服务系统|东郊到家软件提供高效服务的科技支柱

预约上门服务系统的崛起改变了传统服务行业的格局。用户不再需要亲自前往实体店面&#xff0c;而是通过几次点击就能享受到各类服务。这背后离不开预约上门服务系统的智能化和高效性&#xff0c;而源码正是这个系统的灵魂所在。下面小编就给大家介绍下上门服务系统开发优势。 1…

Gavin Wood:财库保守主义偏离了初心,应探索 Fellowship 等更有效的资金部署机制

波卡创始人 Gavin Wood 博士最近接受了 The Kusamarian 的采访&#xff0c;分享了他的过往经历、对治理的看法&#xff0c;还聊到了 AI、以太坊、女巫攻击、财库等话题。本文整理自 PolkaWorld 对专访编译的部分内容&#xff0c;主要包含了 Gavin 对治理、财库提案、生态资金分…

人工智能_机器学习056_拉格朗日乘子法原理推导_公式由来详解_原理详解---人工智能工作笔记0096

https://blog.csdn.net/Soft_Po/article/details/118332454 这里有老师的一篇文章介绍拉格朗日乘子法的原理推导 结合老师的这篇文章我们来看一下详细的推导过程 可以看到上一节我们说,一个有条件的,函数,可以转换为一个,无条件的函数, 根据拉格朗日乘子法,可以创建出一个等…

uc_09_创建新进程 exec() system()

1 什么是创建新进程(夺舍) 在前面文章中&#xff0c;我们学习了fork()函数用来创建子进程。 子进程是父进程的副本&#xff0c;复制父进程除代码段以外的其他数据&#xff0c;代码段数据和父进程共享。 子进程的PID与父进程不同&#xff1a; 而创建新进程则不同。 与fork()不同…

docker-compose;私有镜像仓库harbor搭建;镜像推送到私有仓库harbor

docker-compose&#xff1b;私有镜像仓库harbor搭建&#xff1b;镜像推送到私有仓库harbor 文章目录 docker-compose&#xff1b;私有镜像仓库harbor搭建&#xff1b;镜像推送到私有仓库harbordocker-compose私有镜像仓库harbor搭建镜像推送到私有仓库harbor docker-compose D…

论坛自动多播放源采集源码

论坛自动多播放源采集源码是一种用于自动抓取论坛中的多个视频播放源的程序源代码。它可以自动搜索并采集论坛中的多个视频播放源&#xff0c;帮助用户快速找到所需的视频资源。该源码可以帮助用户节省时间和精力&#xff0c;提高视频资源的获取效率。 演示 地 址&#xff1a;…

2023年小美赛认证杯A题太阳黑子预测(Sunspot Forecasting)思路模型代码解析

2023年小美赛认证杯A题&#xff1a;太阳黑子预测&#xff08;Sunspot Forecasting&#xff09; 【请电脑打开本文链接&#xff0c;扫描下方名片中二维码&#xff0c;获取更多资料】 一、问题重述 太阳黑子是太阳光球上的现象&#xff0c;呈暂时性斑点&#xff0c;比周围区域…

2023年中国金融科技研究报告

第一章 行业概况 1.1 定义 金融科技&#xff08;FinTech, Financial Technology&#xff09;代表了金融和技术的交汇。这一领域虽然处于发展的初期阶段&#xff0c;但已经展现出深远的影响力。金融科技的业务模式多样&#xff0c;涵盖了从传统金融服务的数字化转型到新兴技术…