【pytorch】深度学习入门一:pytorch的安装与配置(Windows版)

请支持原创,认准DannisTang(tangweixuan1995@foxmail.com)

文章目录

  • 第〇章 阅读前提示
  • 第一章 准备工作
    • 第一节 Python下载
    • 第二节 Python安装
    • 第三节 Python配置
    • 第四节 Pycharm下载
    • 第五节 Pycharm安装
    • 第六节 CUDA的安装
  • 第二章 Anaconda安装与配置
    • 第一节 Anaconda下载与环境变量配置
      • 1、Anaconda下载与安装
      • 2、Anaconda配置环境变量
    • 第二节 Anaconda镜像源配置
      • 1、查看
      • 2、配置(命令行)
        • 1)直接输入命令行配置
        • 2)文件夹进行输入配置(Windows版)
      • 3、配置(界面配置)
      • 4、删除(命令行)
      • 5、修改配置源(Linux版)
      • 6、常用命令
        • 1)环境类
        • 2)包类
    • 第三节 Pytorch安装与配置
      • 1、创建Pytorch环境
      • 2、激活Pytorch环境
      • 3、关闭Pytorch环境(可选)
      • 4、找到pytorch命令
      • 5、验证pytorch安装
      • 附节一、报错的场景和方法
        • 1、创建环境报错
        • 2、创建pytorch报错
        • 3、下载时间超时
        • 4、报错信息
      • 第四节 进入pycharm
        • 1、添加环境
        • 2、小试牛刀

第〇章 阅读前提示

本文重点放在深度学习上,因此,对于Python部分的内容,会稍显不足。如果本文的读者想重点了解Python相关的知识,请查看其他的文章。但是为了方便入门,本文在前面依然会描述Python配置相关的内容,以及一些需要用到的Python相关的命令等。

同时值得注意的是,本文如果没有特殊说明,均是在Windows平台下进行开发和调试等。

并且为了保证兼容性,硬件设备(即你的电脑主机)最好为英特尔的CPU与英伟达的GPU(通俗理解为显卡)。

第一章 准备工作

本章将讲解深度学习的准备工作,因为不是本文的主要目的,所以不会花费很大的篇幅去讲解, 如果在本章的过程中出现问题,可以在网络中搜索下出现的问题。

本章讲解,在windows下安装和配置python和pycharm以及英伟达的cuda的安装。

第一节 Python下载

Python官网下载,下载版本为3.11.5。下载地址链接(Windows版本)

选择自己的版本进行下载,不同Python的版本可能会有兼容性的问题

(版本兼容性:通常情况来说,大版本不同,不兼容性较大,小版本不同,兼容性较小。版本号大的会兼容版本号小的。但不排除有特殊情况)

第二节 Python安装

如果选择exe的安装包的方式的话,直接下一步下一步的安装即可

第三节 Python配置

exe安装包的方法进行默认的配置

第四节 Pycharm下载

在jetbrain的官网下载Pycharm下载地址链接(Windows版本)

第五节 Pycharm安装

因为是exe安装包,所以直接下一步即可。安装完成之后,需要license,请自行解决license。

第六节 CUDA的安装

在cmd命令窗口下面,执行命令

nvidia-smi

查看自己的cuda版本,如果版本太低的话,可以下载Nvidia GeForce Experience进行更新驱动
未更新英伟达驱动前更新英伟达驱动后

注:这里我更新过英伟达的显卡驱动,用的是Nvidia GeForce Experience,直接自动更新,所以前后的版本不一致(第一次是516.94,cuda是11.7;第二次是546.17,cuda是12.3)。

并且如果使用Nvidia GeForce Experience的话,需要登录Nvidia的账号,自行注册一个即可,这里不再赘述。

Nvidia GeForce Experience下载地址(下载安装后自动更新驱动,含CUDA)

第二章 Anaconda安装与配置

第一节 Anaconda下载与环境变量配置

1、Anaconda下载与安装

先下载anaconda,因为是免费的,所以官网下载即可
下载地址链接(Windows版本)

下载完成后,进行安装,安装后即可使用,安装过程中直接点下一步即可。安装的路径为,需要记录这两个路径,后面在pycharm需要用到,如果是你自己安装的(并且是默认的路径),将用户名替换成你自己的用户名即可

C:\Users\用户名\AppData\Local\anaconda3
C:\Users\用户名\AppData\Local\anaconda3\Scripts\conda.exe

安装完成后(如果是默认安装的话),可以在开始菜单中看到这些选项,其中用的最多的就是这个Anaconda Prompt后面也会重点用到。
Anaconda Prompt命令行

2、Anaconda配置环境变量

进入控制面板,然后输入环境变量,编辑Path即可
找到环境变量Path

然后添加以下三个路径即可
添加环境变量

点击确定即可完成添加。

第二节 Anaconda镜像源配置

1、查看

在Anaconda prompt中输入以下的命令以查看当前的镜像源

# 查看镜像源
conda config --show channels# 查看默认镜像源
conda config --show default_channels

2、配置(命令行)

1)直接输入命令行配置

在Anaconda prompt中输入以下的命令(选择性添加)

# 添加阿里源
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/r/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/msys2/# 添加清华源(不建议用)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/# (这几条是删除清华源的命令)
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/# 添加中科大源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/# 如果是使用命令行进行镜像源配置,这里需要补充一条命令,在后续使用会有帮助
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
2)文件夹进行输入配置(Windows版)

直接打开文件夹窗口,输入

C:/user/你的用户/.condarc

这里将你的用户换成你的Windows的电脑的用户即可,直接回车,会弹出打开方式,采用记事本或是你常用笔记软件打开都行,但是建议用记事本,因为常用的软件(比如UE或是notepad++会修改编码,然后用不了)。

然后换成以下的配置(全量替换),直接保存关闭就行(可以自行备份之前的配置信息)

# 以下为阿里源(推荐使用)
channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.aliyun.com/anaconda/pkgs/main/- https://mirrors.aliyun.com/anaconda/pkgs/free/- https://mirrors.aliyun.com/anaconda/pkgs/r/- https://mirrors.aliyun.com/anaconda/pkgs/msys2/
custom_channels:conda-forge: https://mirrors.aliyun.com/anaconda/cloudmsys2: https://mirrors.aliyun.com/anaconda/cloudbioconda: https://mirrors.aliyun.com/anaconda/cloudmenpo: https://mirrors.aliyun.com/anaconda/cloudpytorch: https://mirrors.aliyun.com/anaconda/cloudpytorch-lts: https://mirrors.aliyun.com/anaconda/cloudsimpleitk: https://mirrors.aliyun.com/anaconda/cloud
remote_read_timeout_secs: 10000.0# 以下为清华源(不建议用,不太行,可能网络会有问题)
channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmsys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudbioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmenpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudsimpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
remote_read_timeout_secs: 10000.0

3、配置(界面配置)

该步骤与上步骤(步骤2)能实现同样的配置,因此,该步骤和上步骤二选一进行操作即可。
在Anaconda navigator中操作,
1)点击environment,点击channels,点击添加
2)输入以下的配置源(可以按需选择),输入完成后按回车确认

https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
https://mirrors.aliyun.com/anaconda/pkgs/free/
https://mirrors.aliyun.com/anaconda/pkgs/main/

3)删除默认的配置源defaults
4)点击update channels进行更新

4、删除(命令行)

在Anaconda prompt中输入以下的命令

# 以下为几个例子,如有需要,则进行替换源即可
conda config --remove channels defaults
conda config --remove channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pro/conda config --remove default_channels https://mirrors.aliyun.com/anaconda/pkgs/free/

这里采用界面操作形式删除也可以,具体方法参照上步骤(步骤3)

5、修改配置源(Linux版)

1)使用vim修改的配置文件

vim ~/.condarc

2)清空内容,然后复制下午并保存

#以下是阿里源(推荐使用)
channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.aliyun.com/anaconda/pkgs/main/- https://mirrors.aliyun.com/anaconda/pkgs/free/- https://mirrors.aliyun.com/anaconda/pkgs/r/- https://mirrors.aliyun.com/anaconda/pkgs/msys2/
custom_channels:conda-forge: https://mirrors.aliyun.com/anaconda/cloudmsys2: https://mirrors.aliyun.com/anaconda/cloudbioconda: https://mirrors.aliyun.com/anaconda/cloudmenpo: https://mirrors.aliyun.com/anaconda/cloudpytorch: https://mirrors.aliyun.com/anaconda/cloudpytorch-lts: https://mirrors.aliyun.com/anaconda/cloudsimpleitk: https://mirrors.aliyun.com/anaconda/cloud
remote_read_timeout_secs: 10000.0# 以下是清华源(不建议使用)
channels:- defaults
show_channel_urls: true
default_channels:- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:conda-forge: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmsys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudbioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmenpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudsimpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

6、常用命令

1)环境类
# 进入(激活)环境(将命令中的中文替换对应的英文名)
activate 环境名# 退出(关闭)环境(将命令中的中文替换对应的英文名)
deactivate 环境名#列出所有环境(三条命令皆可)
conda env list
conda info --envs
conda info -e# 删除环境及下属所有包(将命令中的中文替换对应的英文名)
conda remove -n 环境名 --all # 删除本环境下的所有包(不删除环境)
conda clean -all# 复制环境(将命令中的中文替换对应的英文名)
conda create --name 新环境名 --clone 旧环境名
2)包类
# 查看conda的版本号,通常都是查看版本号以验证某软件是否安装
conda --version# 列出当前环境的所有包
conda list# 查看当前环境已安装包
conda list# 查找可安装的包(将命令中的中文替换对应的英文名)
conda search 包名# 在当前环境安装包(将命令中的中文替换对应的英文名)
conda install 包名# 在指定环境安装包(将命令中的中文替换对应的英文名)
conda install --name 环境名 包名# 在当前环境更新包(将命令中的中文替换对应的英文名)
conda update 包名# 在当前环境更新所有包(以下两条命令皆可)
conda update --all
conda upgrade --all# 在当前环境卸载包(将命令中的中文替换对应的英文名)
conda remove 包名# 在指定环境卸载包(将命令中的中文替换对应的英文名)
conda remove --name 环境名 包名# 精确查找包
conda search --full-name 精确包名
# 例子:conda search --full-name python# 模糊查找包
conda search 模糊包名
# 例子:conda search py

第三节 Pytorch安装与配置

1、创建Pytorch环境

使用 Anaconda Prompt (菜单栏中选项,如果不记得了,查看第二章第一节的第1步)进入命令行,创建一个pytorch环境

# 命令模板
conda create -n 环境名称 python=实际安装Python版本# 实际执行
conda create -n pytorchDemoProject python=3.11.5

我这里创建的环境名称为pytorchDemoProject,实际的Python的版本为3.11.5

注:如果不指定python版本,则会安装anaconda的相应的版本的。如anaconda是第二版,则会安装python2的版本;如anaconda是第三版,则会安装python3的版本

在安装过程中,先会找到对应的包,然后过程中提提示是否安装Y/N,这时候输入y并回车即可。
如图,第一张图为更新升级conda。再执行一次,即为安装pytorch。
升级conda作者注:这里在安装过程中实际上出现了一些问题,作者解决了之后,即可成功安装。但因如此,没能成功截取到图片。因此这里少了一张安装的图片,但安装过程如上文所述,只需在过程中按y并回车以确认安装即可。

2、激活Pytorch环境

然后激活刚刚创建的pytorchDemoProject 环境,这里的激活也可以理解为进入的意思

conda activate pytorchDemoProject 

如图
进入创建好的pytorch环境

3、关闭Pytorch环境(可选)

这一步是可选的,有激活的命令,也就有对应的关闭命令,关闭刚刚创建的pytorchDemoProject环境

conda deactivate pytorchDemoProject 

4、找到pytorch命令

去官网找到安装命令

然后根据图示的方法选择命令
官网的安装命令

复制这里生成的命令(即Run this Command中的命令,也就是下面这条),然后执行生成的命令,以安装pytorch

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

安装过程中还要输入一次y进行确认,在安装过程中会遇到很多问题,请查看下面的附节一进行排查和解决

5、验证pytorch安装

使用命令先查看是否安装成功

conda list

如图,显示如下,即表示该环境下有这些包了
安装成功的包

安装完了之后,输入python命令进入python界面
然后输入import torch进行导入
然后输入torch.cuda.is_available()进行验证是否成功,如图
验证是否安装成功

如图,即表示安装成功

附节一、报错的场景和方法

1、创建环境报错

报错提示如下

CondaHTTPError: HTTP 000 CONNECTION FAILED for url https://conda.anaconda.org/pytorch/win-64/pytorch-2.1.1-py3.11_cuda12.1_cudnn8_0.tar.bz2
Elapsed: -
An HTTP error occurred when trying to retrieve this URL.
HTTP errors are often intermittent, and a simple retry will get you on your way.

没有更新配置镜像源所致,需要更新一下镜像源

2、创建pytorch报错

报错提示如下
错误的配置了镜像源

配置了错误的镜像源所致,需要更新一下配置的镜像源

3、下载时间超时

有时候也会报超时的错误,如图

CondaError: Downloaded bytes did not match Content-Length
url: https://conda.anaconda.org/pytorch/win-64/pytorch-2.1.1-py3.11_cuda12.1_cudnn8_0.tar.bz2
target_path: C:\Users\tangweixuan\AppData\Local\anaconda3\pkgs\pytorch-2.1.1-py3.11_cuda12.1_cudnn8_0.tar.bz2
Content-Length: 1339118426
downloaded bytes: 26179998

解决方法1:
直接命令行

# 设置100000.0秒的超时时长
conda config --set remote_read_timeout_secs 100000.0

解决方法2:
找到.condarc配置文件,在配置文件最后添加

remote_read_timeout_secs: 100000.0
4、报错信息
Downloading and Extracting Packages
Preparing transaction: done
Verifying transaction: failed
CondaVerificationError: The package for libcurand-dev located at C:\Users\tangweixuan\AppData\Local\anaconda3\pkgs\libcurand-dev-10.3.4.101-0
appears to be corrupted. The path 'bin/curand64_10.dll'
specified in the package manifest cannot be found.
CondaVerificationError: The package for libcurand-dev located at C:\Users\tangweixuan\AppData\Local\anaconda3\pkgs\libcurand-dev-10.3.4.101-0
appears to be corrupted. The path 'include/curand_precalc.h'
specified in the package manifest cannot be found.
ClobberError: This transaction has incompatible packages due to a shared path.
packages: nvidia/win-64::cuda-cupti-12.1.105-0, nvidia/win-64::cuda-nvtx-12.1.105-0, nvidia/win-64::cuda-profiler-api-12.3.101-0
path: 'license'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/cjpeg.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/djpeg.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/jpegtran.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/rdjpgcom.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/bin/wrjpgcom.exe'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jconfig.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jerror.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jmorecfg.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/include/jpeglib.h'
ClobberError: This transaction has incompatible packages due to a shared path.
packages: https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::jpeg-9e-h2bbff1b_1, https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64::libjpeg-turbo-2.0.0-h196d8e1_0
path: 'library/lib/jpeg.lib'

暂时没找到这个报错的原因,直接从头开始来一遍了

第四节 进入pycharm

1、添加环境

直接使用命令行的形式来操作不好操作,这个时候用pycharm进行操作与开发。使用pycharm可以把刚刚创建好的anaconda的环境添加进去,就无需使用命令行进行开发了。
打开pycharm,任意创建一个pure python的project(为了方便看,我这里创建的是一个名叫pytorchProject的项目),你也可以随意命名。然后进入setting设置,然后添加接口
添加接口

然后选择路径
选择路径

使用我们刚刚的路径

# 注意:这里是我的电脑用户tangweixuan,你自己的电脑用户不一定是这个,请注意替换
C:\Users\tangweixuan\AppData\Local\anaconda3\Scripts\conda.exe

使用刚刚的路径

然后加载一下,并且选择我们在Anaconda中创建pytorchDemoProject(此刻,教育完成了闭环了。请给自己鼓掌打打气,你基本已经完成了安装和配置了),并且点击OK即可
选择创建好的环境

可以看到我们刚刚安装的环境里面的包,都有了
环境中包含有的包

然后点击ok,回到主界面;在main.py中输入

import torch
print(torch.cuda.is_available())

点击右上的播放按键进行执行
执行简单的命令

如上图,在下方控制台上打印出了True,表示成功了。

2、小试牛刀

在刚刚的pycharm中,使用和尝试一些基本的pytorch语法来小试牛刀吧!

# 创建一个未初始化的5x3矩阵
x1 = torch.empty(5, 3)
print('x1的结果是:')
print(x1)# 创建一个随机初始化的5x3矩阵
x2 = torch.rand(5, 3)
print('x2的结果是:')
print(x2)# 创建一个5x3的零矩阵,类型为long
x3 = torch.zeros(5, 3, dtype=torch.long)
print('x3的结果是:')
print(x3)# 直接从数据创建tensor
x4 = torch.tensor([5.5, 3])
print('x4的结果是:')
print(x4)

这时输入到main.py中(注意,import torch这句话需要一直保留,即使在后面的开发中也需要保留),可以在下方的控制台看到输出的结果
输入一些简单的pytorch命令
控制台的具体结果如下图
控制台的具体结果

到这里,你就基本完成pytorch的安装与配置了,接下来,可以大展拳脚了,你也来试试看吧(完结撒花)。

本文完全免费且公开,如果你觉得不错的话,请扫描下方二维码进行赞赏吧,你的支持就是我最大的动力,感谢!

请支持原创,认准DannisTang(tangweixuan1995@foxmail.com)

赞赏码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/187203.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Gitee 之初体验(上)

我们在项目开发或者自己学习的时候,总会存在这样的问题: 在一台电脑上编写完代码,想要再另外一台电脑上再去写,再或者和其他人一起协作等等场合,代码传来传去很麻烦。 这个时候,我们就可以去使用代码管理工…

LeetCode刷题---打家劫舍问题

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂,年薪百万! 一、打家劫舍 题目链接:打家劫舍 题目描述 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定…

Spring Security 6.x 系列(7)—— 源码分析之建造者模式

一、建造者模式 WebSecurity、HttpSecurity、AuthenticationManagerBuilder 都是框架中的构建者,把他们放到一起看看他们的共同特点: 查看AuthenticationManagerBuilder的继承结构图: 查看HttpSecurity的继承结构图: 查看WebSec…

数据结构(超详细讲解!!)第二十六节 图(上)

1.基本概念 图(Graph)是一种较线性表和树更为复杂的非线性结构。是对结点的前趋和后继个数不加限制的数据结构,用来描述元素之间“多对多”的关系(即结点之间的关系是任意的)。 一个图G (V,E)由顶点&…

excel 计算断面水质等级

在工作中遇到根据水质监测结果要判断断面等级。写了下面的公式: 因子标准值 limits {COD: [15,15, 20, 15,20],氨氮: [0.15, 0.5, 1, 1.5, 2.0],总磷: [0.02, 0.1, 0.2, 0.3, 0.4] } excel公式: IFS(MAX(IF(M2>20,1,0), IF(N2>2,1,0), IF(O2&g…

RabbitMQ登录控制台显示--你与此网站的连接不是私密连接

一、RabbitMQ默认账号 Note: The default administrator username and password are guest and guest. 注:默认管理员用户名和密码为guest和guest 二、自己修改过或者注册的情况 由于本人之前用过,注册过账号密码,在登录时,用户名账号有异常出现以下问题 解决方案: 因为我的rab…

AI - Steering behaviorsII(碰撞避免,跟随)

Steering Behaviors系统中的碰撞避免,路径跟随,队长跟随 Collision Avoid 在物体前进的方向,延伸一定长度的向量进行检测。相当于物体对前方一定可使范围进行检测障碍物的碰撞 延伸的向量与碰撞物圆心的距离小于碰撞物的半径,则…

计算机体系结构----流水线技术(三)

本文仅供学习,不作任何商业用途,严禁转载。绝大部分资料来自----计算机系统结构教程(第二版)张晨曦等 计算机体系结构----流水线技术(三) 3.1 流水线的基本概念3.1.1 什么是流水线3.1.2 流水线的分类1. 部件级流水线、处理机级流…

C语言之结构体详解

C语言之结构体详解 文章目录 C语言之结构体详解1. 结构体类型的声明2. 结构体变量的创建和初始化3. 结构体的特殊声明4. 结构体的自引用结构体的自引用匿名结构体的自引用 5. 结构体内存对齐5.1 练习一5.2 练习三 6. 为什么存在内存对⻬? 1. 结构体类型的声明 struct tag {me…

05_属性描述符

05_属性描述符 文章目录 05_属性描述符一、属性描述符是什么?二、属性描述符①:查看属性描述②:设置属性描述符③:案例01.代码实现02.代码实现(优化) 一、属性描述符是什么? 属性描述符的结构 在…

类和对象——(3)再识对象

归纳编程学习的感悟, 记录奋斗路上的点滴, 希望能帮到一样刻苦的你! 如有不足欢迎指正! 共同学习交流! 🌎欢迎各位→点赞 👍 收藏⭐ 留言​📝 你说那里有你的梦想,…

MySQL官网推荐书籍

MySQL官网推荐书籍 图片有防盗链csdn转存失败。有图版传送门MySQL官网推荐书籍 高效的MySQL性能:Daniel Nichter的最佳实践和技术 Daniel Nichter 向您展示了如何应用直接影响 MySQL 性能的最佳实践和技术。您将学习如何通过分析查询执行、为常见 SQL 子句和表联接…

KMP基础架构

前言 Kotlin可以用来开发全栈, 我们所熟悉的各个端几乎都支持(除了鸿蒙) 而我们要开发好KMP项目需要一个好的基础架构,这样不仅代码更清晰,而且能共享更多的代码 正文 我们可以先将KMP分为前端和服务端 它们两端也能共享一些代码,比如接口声明,bean类,基础工具类等 前端和…

Go语言 值传递

官方说法,Go中只有值传递,没有引用传递 而Go语言中的一些让你觉得它是引用传递的原因,是因为Go语言有值类型和引用类型,但是它们都是值传递。 值类型 有int、float、bool、string、array、sturct等 引用类型有slice&#xff0c…

Logstash使用指南

介绍 Logstash是一个开源数据收集引擎,具有实时管道功能。它可以动态地将来自不同数据源的数据统一起来,并将数据标准化到你所选择的目的地。尽管Logstash的早期目标是搜集日志,现在它的功能已完全不只于此。任何事件类型都可以加入分析&…

docker (镜像分层、阿里云镜像推送/拉去)-day02

一、镜像概念 Docker 镜像是 Docker 容器的基础,它提供了一种可重复使用的、跨平台的部署方式,使得应用程序的部署和运行变得简单和高效。 把应用程序和配置依赖打包好形成一个可交付的运行环境(包括代码、运行时需要的库、环境变量和配置文件等),打包好…

C语言练习记录(蓝桥杯练习)(小蓝数点)

目录 小蓝数点 第一题程序的输出结果是?: 第二题下面代码的执行结果是什么?: 第三题下面代码的执行结果是什么?: 第四题关于关系操作符说法错误的是?: 第五题对于下面代码段,y的值为? 第六题sum 21 …

Java 数据结构篇-用链表、数组实现栈

🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 栈的说明 2.0 用链表来实现栈 2.1 实现栈 - 入栈方法(push) 2.2 实现栈 - 出栈(pop) 2.3 实现栈 - 查看栈顶元素…

国产linux单用户模式破解无密码登陆 (麒麟系统用户登录密码遗忘解决办法)

笔者手里有一批国产linu系统,目前开始用在日常的工作生产环境中,我这个老程序猿勉为其难的充当运维的或网管的角色。 国产linux系统常见的为麒麟Linux,统信UOS等,基本都是基于debian再开发的linux。 问题描述: 因为…

基于AT89C51单片机的倒数计时器设计

1.设计任务 利用AT89C51单片机为核心控制元件,设计一个简易的数字电压表,设计的系统实用性强、操作简单,实现了智能化、数字化。 本设计采用单片机为主控芯片,结合周边电路组成LED彩灯的闪烁控制系统器,用来控制红色…