空间连通区域@曲面积分为零问题@通量和散度@高斯公式物理意义

文章目录

    • 沿任意闭曲面的曲面积分为0的条件
      • 空间连通区域概念
        • 小结
      • 充要条件定理
      • 证明
    • 通量和散度
    • 流量(通量)
    • 散度和高斯公式的物理意义
      • 借助速度场讨论
      • 一般向量场的散度
      • 小结
      • 高斯公式的向量场的通量和散度向量形式

沿任意闭曲面的曲面积分为0的条件

  • 与讨论曲线积分中闭曲线积分为0的问题类似,这里讨论曲面积分
    • ∬ Σ P d y d z + Q d z d x + R d x d y \iint_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y ΣPdydz+Qdzdx+Rdxdy与具体的曲面 Σ \Sigma Σ无关而只取决于** Σ \Sigma Σ的边界曲线**的条件
    • 即探索沿任意闭曲面的曲面积分为0的条件
  • 这个问题可用高斯公式解决

空间连通区域概念

  • 对空间区域 G G G,若 G G G任一闭曲面 Σ \Sigma Σ所围成的区域全属于G,则称 G G G空间二维单连通区域
  • G G G任一闭曲线 L L L总是可以张成一片完全属于 G G G的曲面,称 G G G空间一维单连通区域
    • 注意是可以张成一张(存在一张)曲面,而不要求任意张成的曲面,更不要求平面
    • 例如吹泡泡的情形,
小结
  • 空间一维单连通区域考察的是闭曲面围成区域(闭曲面确定后,所围成的空间区域就唯一确定;而空间二维单连通区域考察闭曲线张成的曲面(可以张成无数张曲面中存在一张属于 G G G即可)
  • 球面所围成的区域既是空间二维单连通的,又是空间一维单连通的
  • 环面所围成的区域是空间二维单连通的,但不是空间一维单连通的
  • 两个同心球面之间的区域是空间一维单连通的,但不是空间二维单连通的

充要条件定理

  • G G G是空间二维单连通区域,若 P ( x , y , z ) P(x,y,z) P(x,y,z), Q ( x , y , z ) Q(x,y,z) Q(x,y,z) R ( x , y , z ) R(x,y,z) R(x,y,z) G G G内具有一阶连续偏导数,则曲面积分 ∬ Σ P d y d z + Q d z d x + R d x d y \iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y ΣPdydz+Qdzdx+Rdxdy(1)“在 G G G内与所取曲面 Σ \Sigma Σ无关而只取决于 Σ \Sigma Σ的边界曲线”(或"沿 G G G内任一闭曲面的曲面积分为0"这种说法更加便于推理)的充要条件 P x + Q y + R z = 0 P_x+Q_{y}+R_{z}=0 Px+Qy+Rz=0(2) G G G内恒成立

证明

  • 充分性:若(2)在 G G G内恒成立,则由高斯公式,立即推出沿 G G G内任意闭曲面的曲面积分为0,即 ∬ Σ P d y d z + Q d z d x + R d x d y \iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y ΣPdydz+Qdzdx+Rdxdy= ∭ Ω ( P x + Q y + R z ) d v \iiint_{\Omega}(P_x+Q_{y}+R_{z})\mathrm{d}v Ω(Px+Qy+Rz)dv= 0 0 0
  • 必要性:反证法
    • 设沿 G G G内任一闭曲线的曲面积分为0,若(2)式在 G G G内不恒成立,即存在 M 0 ∈ G M_{0}\in{G} M0G,s.t. ( P x + Q y + R z ) M 0 ≠ 0 (P_x+Q_{y}+R_{z})_{M_{0}}\neq{0} (Px+Qy+Rz)M0=0,与求证平面上曲线积分和路径无关条件时类似,可得出假设不成立,即 G G G内存在着某个闭曲面使得沿该闭曲面的积分不等于0,因而与假设矛盾,说明条件(2)是必要的

通量和散度

  • 曲面积分的应用

流量(通量)

  • 设向量场 A ( x , y , z ) \bold{A}(x,y,z) A(x,y,z)= P ( x , y , z ) i P(x,y,z)\bold{i} P(x,y,z)i+ Q ( x , y , z ) j Q(x,y,z)\bold{j} Q(x,y,z)j+ R ( x , y , z ) k R(x,y,z)\bold{k} R(x,y,z)k(1)
    • 其中 P , Q , R P,Q,R P,Q,R均具有一阶来连续偏导数, Σ \Sigma Σ是场内的一片有向曲面; n \bold{n} n Σ \Sigma Σ在点 ( x , y , z ) (x,y,z) (x,y,z)处的单位法向量,在积分 ∬ Σ A ⋅ n d S \iint_{\Sigma}\bold{A\cdot{n}}\mathrm{d}S ΣAndS(2)称为向量场 A \bold{A} A通过曲面 Σ \Sigma Σ向指定侧的通量(流量)
  • 由两类曲面积分的关系,通量又可以表示为
    • Φ \Phi Φ= ∬ Σ A ⋅ n d S \iint\limits_{\Sigma}\bold{A}\cdot\bold{n}\mathrm{d}{S} ΣAndS= ∬ Σ A ⋅ d S \iint\limits_{\Sigma}\bold{A}\cdot\mathrm{d}\bold{S} ΣAdS= ∬ Σ A n d S \iint\limits_{\Sigma}A_{n}\mathrm{d}S ΣAndS= ∬ Σ P d y d z + Q d z d x + R d x d y \iint\limits_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y ΣPdydz+Qdzdx+Rdxdy(3)

  • 求向量场 A \bold{A} A= y z j + z 2 k yz\bold{j}+z^2\bold{k} yzj+z2k(1)穿过曲面 Σ \Sigma Σ流向上侧的通量,
    • 其中 Σ \Sigma Σ为半侧柱面 y 2 + z 2 = 1 y^2+z^2=1 y2+z2=1, ( z ⩾ 0 ) (z\geqslant{0}) (z0)(2)被平面 x = 0 , x = 1 x=0,x=1 x=0,x=1截下的有限部分
    • 曲面 Σ \Sigma Σ上侧的法向量可以由 f ( x , y , z ) f(x,y,z) f(x,y,z)= y 2 + z 2 y^2+z^2 y2+z2的梯度 ∇ f \nabla{f} f得出,且其法向量表示为 n \bold{n} n= ∇ f ∣ ∇ f ∣ \frac{\nabla{f}}{|\nabla{f}|} ∣∇ff= 2 y j + 2 z ( k ) ( 2 y ) 2 + ( 2 z ) 2 \frac{2y\bold{j}+2z(\bold{k})}{\sqrt{(2y)^2+(2z)^2}} (2y)2+(2z)2 2yj+2z(k)= y j + z k y 2 + z 2 \frac{y\bold{j}+z\bold{k}}{\sqrt{y^2+z^2}} y2+z2 yj+zk,代入(2),得 n \bold{n} n= y j + z k y\bold{j}+z\bold{k} yj+zk(3)
    • A ⋅ n \bold{A\cdot{n}} An= y 2 z + z 3 y^2z+z^3 y2z+z3= z ( x 2 + y 2 ) z(x^2+y^2) z(x2+y2),代入(2),得 A ⋅ n = z \bold{A\cdot{n}}=z An=z(4)
    • Φ \Phi Φ= ∬ Σ A ⋅ n d S \iint\limits_{\Sigma}\bold{A}\cdot\bold{n}\mathrm{d}{S} ΣAndS= ∬ Σ z d S \iint\limits_{\Sigma}z\mathrm{d}{S} ΣzdS= ∬ D x y 1 − y 2 1 1 − y 2 d S \iint\limits_{D_{xy}}\sqrt{1-y^2}\frac{1}{\sqrt{1-y^2}}\mathrm{d}{S} Dxy1y2 1y2 1dS= ∬ D x y 1 d S \iint\limits_{D_{xy}}1\mathrm{d}{S} Dxy1dS=2
    • 计算分析和过程
      • 将式(2)变形为 z = 1 − y 2 z=\sqrt{1-y^2} z=1y2
      • 1 + z x 2 + z y 2 \sqrt{1+z_{x}^2+z_{y}^2} 1+zx2+zy2 = 1 + 0 + y 2 1 − y 2 \sqrt{1+0+\frac{y^2}{1-y^2}} 1+0+1y2y2 = 1 − y 2 + y 2 1 − y 2 \sqrt{\frac{1-y^2+y^2}{1-y^2}} 1y21y2+y2 = 1 1 − y 2 \frac{1}{\sqrt{1-y^2}} 1y2 1
      • 确定 D x y D_{xy} Dxy时,用截面 z = 0 z=0 z=0截取(代入)方程(2),得 y = ± 1 y=\pm{1} y=±1,分别和直线 x = 0 , 1 x=0,1 x=0,1相交,这四条 x O y xOy xOy面上得直线,围成一个矩形,面积为 2 2 2

散度和高斯公式的物理意义

借助速度场讨论

  • 速度是矢量(属于向量的范畴)

  • 高斯公式: ∭ Ω ( P x + Q y + R z ) d v \iiint_\Omega{(P_{x}+Q_{y}+R_{z})}\mathrm{d}v Ω(Px+Qy+Rz)dv= ∯ Σ P d y d z + Q d z d x + R d x d y \oiint_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y ΣPdydz+Qdzdx+Rdxdy(0)

  • 设在闭区域 Ω \Omega Ω上由稳定流动的不可压缩的流体(设流体密度为1)的速度场为

    • v ( x , y , z ) \bold{v}(x,y,z) v(x,y,z)= P ( x , y , z ) i P(x,y,z)\bold{i} P(x,y,z)i+ Q ( x , y , z ) j Q(x,y,z)\bold{j} Q(x,y,z)j+ R ( x , y , z ) k R(x,y,z)\bold{k} R(x,y,z)k(1)
  • 其中函数 P , Q , R P,Q,R P,Q,R均具有一阶连续偏导数, Σ \Sigma Σ是闭区域 Ω \Omega Ω的边界曲面的外侧

  • n \bold{n} n是曲面 Σ \Sigma Σ在点 ( x , y , z ) (x,y,z) (x,y,z)处的单位法向量,则由第二类曲面积分在流量问题的直接应用,和第一类曲面积分的向量形式,单位时间内经过曲面 Σ \Sigma Σ流向指定侧的流体总质量就是:

    • ∬ Σ v ⋅ n d S \iint_{\Sigma}\bold{v\cdot{n}}\mathrm{d}S ΣvndS= ∬ Σ v n d S \iint_{\Sigma}v_{n}\mathrm{d}S ΣvndS= ∬ Σ P d y d z + Q d z d x + R d x d y \iint_{\Sigma}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y ΣPdydz+Qdzdx+Rdxdy(2)
    • 其中 v ⋅ n \bold{v\cdot{n}} vn= v n v_{n} vn,恰好是 v \bold{v} v在单位向量 n \bold{n} n的投影
  • 因此高斯公式的右端可以解释为

    • 速度场 v \bold{v} v通过闭曲面 Σ \Sigma Σ流向外侧的通量
    • 即流体在单位时间内离开闭区域 Ω \Omega Ω的总质量
  • 另一方,由于我们假定流体是不可压缩且流动稳定,因此在流体离开 Ω \Omega Ω的同时, Ω \Omega Ω内部必须有产生流体的源头产生出同样多的流体进行补充

  • 因此高斯公式左端可以解释为

    • 分布在 Ω \Omega Ω内的流体源头在单位时间内所产生的流体的总质量
  • 用公式(2)改写高斯公式(0),得 ∭ Ω ( P x + Q y + R z ) d v \iiint_\Omega{(P_{x}+Q_{y}+R_{z})}\mathrm{d}v Ω(Px+Qy+Rz)dv= ∯ Σ v n d S \oiint_{\Sigma}v_{n}\mathrm{d}S ΣvndS(3)(右端是闭曲面积分)

  • 闭区域的体积为 V V V,同时除式(3),得 1 V ∭ Ω ( P x + Q y + R z ) d v \frac{1}{V} \iiint_\Omega{(P_{x}+Q_{y}+R_{z})}\mathrm{d}v V1Ω(Px+Qy+Rz)dv= 1 V ∯ Σ v n d S \frac{1}{V}\oiint_{\Sigma}v_{n}\mathrm{d}S V1 ΣvndS(4)

  • 式(4)左端表示: Ω \Omega Ω内的源头在单位时间和单位体积内所产生的流体的质量的平均值(而不仅仅是密度)

  • 对(4)应用积分中值定理

    • 存在 P 0 = ( ξ , η , ζ ) ∈ Ω P_{0}=(\xi,\eta,\zeta)\in{\Omega} P0=(ξ,η,ζ)Ω,s.t. V ⋅ [ 1 V ( P x + Q y + R z ) ] ∣ P 0 V\cdot[\frac{1}{V}(P_x+Q_{y}+R_{z})]|_{P_{0}} V[V1(Px+Qy+Rz)]P0= 1 V ∯ Σ v n d S \frac{1}{V}\oiint_{\Sigma}v_{n}\mathrm{d}S V1 ΣvndS,
    • ( P x + Q y + R z ) ∣ P 0 (P_x+Q_{y}+R_{z})|_{P_{0}} (Px+Qy+Rz)P0= 1 V ∯ Σ v n d S \frac{1}{V}\oiint_{\Sigma}v_{n}\mathrm{d}S V1 ΣvndS(5)
  • Ω \Omega Ω缩向一点 M ( x , y , z ) M(x,y,z) M(x,y,z),取(5)式极限,得 P x + Q y + R z P_x+Q_{y}+R_{z} Px+Qy+Rz= lim ⁡ Ω → M 1 V ∯ Σ v n d S \lim\limits_{\Omega\to{M}} \frac{1}{V}\oiint_{\Sigma}v_{n}\mathrm{d}S ΩMlimV1 ΣvndS(6)

  • 式(6)左端称为速度场 v \boldsymbol{v} v M M M通量密度散度,记为 d i v v ( M ) \mathrm{div}\;\boldsymbol{v}(M) divv(M),即 d i v v ( M ) \mathrm{div}\;\boldsymbol{v}(M) divv(M)= P x + Q y + R z P_{x}+Q_{y}+R_{z} Px+Qy+Rz(7)

    • d i v v ( M ) \mathrm{div}\;\boldsymbol{v}(M) divv(M)可以看作稳定流动的不可压缩流体在点 M M M的源头强度
    • d i v v ( M ) > 0 \mathrm{div}\;\boldsymbol{v}(M)>0 divv(M)>0的点处,流体从该点向外发散,表示流体在该点处有正源
    • d i v v ( M ) < 0 \mathrm{div}\;\boldsymbol{v}(M)<0 divv(M)<0的点处,流体从该点汇聚,表示流体在该点处有吸收流体的负源()
    • d i v v ( M ) = 0 \mathrm{div}\;\boldsymbol{v}(M)=0 divv(M)=0点处,表示流体在该点处无源

一般向量场的散度

  • 对于一般的向量场: A ( x , y , z ) \bold{A}(x,y,z) A(x,y,z)= P ( x , y , z ) i P(x,y,z)\bold{i} P(x,y,z)i+ Q ( x , y , z ) j Q(x,y,z)\bold{j} Q(x,y,z)j+ R ( x , y , z ) k R(x,y,z)\bold{k} R(x,y,z)k(8),
    • 式: P x + Q y + R z P_x+Q_{y}+R_{z} Px+Qy+Rz称为向量场 A \bold{A} A散度,记为 d i v A \mathrm{div}\;\boldsymbol{A} divA,即 d i v A \mathrm{div}\;\boldsymbol{A} divA= P x + Q y + R z P_x+Q_{y}+R_{z} Px+Qy+Rz(9)
    • 利用向量微分算子 ∇ \nabla , A \bold{A} A散度也可以表达为 ∇ ⋅ A \nabla\cdot{\bold{A}} A,即 d i v A \mathrm{div}\;\boldsymbol{A} divA= ∇ ⋅ A \nabla\cdot{\bold{A}} A(9-1)

小结

  • 虽然通量和散度概念的建立看似复杂,但计算公式是十分简单的
  • A \bold{A} A= y z j + z 2 k yz\bold{j}+z^2\bold{k} yzj+z2k(1)的散度
  • 解:
    • d i v A \mathrm{div}\;\boldsymbol{A} divA= ( y z ) y + ( z 2 ) z (yz)_{y}+(z^2)_{z} (yz)y+(z2)z= z + 2 z z+2z z+2z= 3 z 3z 3z

高斯公式的向量场的通量和散度向量形式

  • 利用向量场的通量和散度,高斯公式可以表示为

    • ∭ Ω d i v A d v \iiint_{\Omega} \mathrm{div}\;\boldsymbol{A}\mathrm{d}v ΩdivAdv= ∬ Σ A n d S \iint\limits_{\Sigma}A_{n}\mathrm{d}S ΣAndS(2)
      • ∭ Ω ∇ ⋅ A \iiint_{\Omega}\nabla\cdot{\bold{A}} ΩA= ∬ Σ A n d S \iint\limits_{\Sigma}A_{n}\mathrm{d}S ΣAndS(2-1)
    • 对调(2)两端: ∬ Σ A n d S \iint\limits_{\Sigma}A_{n}\mathrm{d}S ΣAndS= ∭ Ω d i v A d v \iiint_{\Omega} \mathrm{div}\;\boldsymbol{A}\mathrm{d}v ΩdivAdv(2-2)
  • 公式(2-2)表示:向量场 A \bold{A} A通过闭曲面 Σ \Sigma Σ流向外侧的通量(等号右侧)等于向量场 A \bold{A} A散度在闭曲面 Σ \Sigma Σ所围闭区域 Ω \Omega Ω上的积分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/187111.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个菜单两个二级路由的搭建

效果如下&#xff0c;而且这是最上方的菜单&#xff0c;需要进入以后重定向。 {path: /,name: HOME,component: ConsoleLayout, //这里也有router-viewmeta: {menu: false},redirect: {name: ManagerList},children: [{path: /rightsManage,name: RightsManage,component: () &…

【FMC140】 基于VITA57.4标准的双通道5.2GSPS(或单通道10.4GSPS)射频采样FMC+子卡模块

板卡概述 FMC140是一款具有缓冲模拟输入的低功耗、12位、双通道&#xff08;5.2GSPS/通道&#xff09;、单通道10.4GSPS、射频采样ADC模块&#xff0c;该板卡为FMC标准&#xff0c;符合VITA57.1规范&#xff0c;该模块可以作为一个理想的IO单元耦合至FPGA前端&#xff0c;8通道…

第三届大湾区跨境物流商交会 深航协华南会14周年庆盛大召开

2023年11月28日&#xff0c;华南物流商会年度盛典:第三届大湾区跨境物流商交会 暨 深航协华南会十四周年庆在深圳市龙华希尔顿逸林酒店隆重举行。长沙市驻深办事处刘永红主任、深圳市商务局鲁云帆处长、深圳市航空业协会朱庆峰会长、深圳市物流行业协会王利强会长、深圳市跨境电…

ComfiUI API调用随记

来进行知识接力了&#xff1a; 首先了解下ComfiUI的APIstable diffusion comfyui的api使用教程-CSDN博客 对于ComfiUI&#xff0c;接口比较简单。查询接口比较容易看明白。 对于发起prompt的请求&#xff0c;如果需要图片的&#xff0c;则需预先上传图片给ComfiUI&#xff0c…

基于深度学习的驾驶员状态监测预警系统(正文)

摘 要 近年来驾驶员因疲劳驾驶而造成的交通事故逐年增多&#xff0c;驾驶员的驾驶状态对道路和人身安全产生重大影响&#xff0c;因此做好驾驶员驾驶状态的管理及预警是非常有必要的。 随着深度学习在目标检测算法应用的不断深入&#xff0c;YOLOv5等目标检测算法也相继具有了广…

11.30固定成本,完全竞争市场,无差异曲线,帕累托最优

固定成本 固定成本是指不随生产量变化而变化的成本&#xff0c;它是企业在生产过程中无论产量高低都必须支付的成本。计算固定成本的方法如下&#xff1a; 确定固定成本的项目&#xff1a;首先需要确定固定成本的项目&#xff0c;例如租金、折旧费、固定人工费用等。 收集相关…

暗物质:揭秘宇宙的隐形奥秘

暗物质:揭秘宇宙的隐形奥秘 一、引言 在浩瀚的宇宙中,有一种神秘的存在,它虽然看不见、摸不着,但却对宇宙的结构和演化起着至关重要的作用。这种存在就是暗物质。暗物质的研究是天文学和物理学领域的热点之一,科学家们正在利用各种手段来揭示它的奥秘。在本文中,我们将一…

学习k8s的介绍(一)

一、kubernetes及Docker相关介绍 1、kubernetes是什么 1-1、简称为k8s或kube&#xff0c;是一个可移植、可扩展的开源平台&#xff0c;用于管理容器化的工作负载和服务&#xff0c;可促进声明式配置和自动化。 声明式配置语法&#xff1a; kubectl create/apply/delete -f xx…

11-30 SpringBoot2

热部署 开发过程中,修改代码,不需要重启,自动更新 项目上线,一定要关闭 SpringBoot热部署的实现&#xff1f;&#xff1f; ideal默认阻止class类更新 2&#xff0e;需要手动构建项目&#xff0c;可以使用快捷键激活此功能ctrl F9 / build project 自动构建项目 允许程序运行…

劲爆:Sam Altman 回归CEO专访确认Q*的存在

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

链表高频面试题

1. 两个链表第一个公共子节点 LeetCode160 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; listA [4,1,8,4,5], listB [5…

currently the ‘ssl’ module is compiled with ‘LibreSSL 2.8.3’

/Users/xxx/Library/Python/3.9/lib/python/site-packages/urllib3/init.py:34: NotOpenSSLWarning: urllib3 v2.0 only supports OpenSSL 1.1.1, currently the ‘ssl’ module is compiled with ‘LibreSSL 2.8.3’. See: https://github.com/urllib3/urllib3/issues/3020 根…

CompletableFuture使用

一、核心API public static CompletableFuture<Void> runAsync(Runnable runnable)public static CompletableFuture<Void> runAsync(Runnable runnable,Executor executor)public static <U> CompletableFuture<U> supplyAsync(Supplier<U> su…

【智能家居】二、添加火灾检测模块(烟雾报警功能点)

可燃气体传感器 MQ-2 和 蜂鸣器 代码段 controlDevice.h&#xff08;设备控制&#xff09;smokeAlarm.c&#xff08;烟雾报警器&#xff09;buzzer.c&#xff08;蜂鸣器&#xff09;mainPro.c&#xff08;主函数&#xff09;运行结果 可燃气体传感器 MQ-2 和 蜂鸣器 代码段 …

Pycharm配置jupyter使用notebook详细指南(可换行conda环节)

本教程为事后记录&#xff0c;部分图片非实操图片。 详细记录了pycharm配置jupyter的方法&#xff0c;jupyter添加其他conda环境的方法&#xff0c;远程密码调用jupyter的方法&#xff0c;修改jupyter工作目录的方法。 文章目录 一、入门级配置1. Pycharm配置Conda自带的jupyt…

华为云cce负载配置时间同步

华为云cce将负载配置好之后&#xff0c;发现里面的时间与真实时间不同步&#xff0c;差了12小时&#xff0c;怎么办&#xff1f; 这时候就需要配置时间同步了。 华为云cce里面通过配置数据存储的路径来解决这个问题的&#xff0c;配置后&#xff0c;需要重启负载。 新建负载…

三、shell - 变量

目录 1、简介 1.1 变量的定义语法: 1.2 变量的定义需遵循的规则 1.3 变量的作用域 2、用户变量 2.1 定义变量 2.2 访问变量 2.3 变量的其他赋值方式 2.4 只读变量 2.5 删除变量 ​​​​​​​3、环境变量 ​​​​​​​3.1 常见的环境变量 ​​​​​​​3.2 自…

030 - STM32学习笔记 - ADC(四) 独立模式多通道DMA采集

030 - STM32学习笔记 - ADC&#xff08;四&#xff09; 独立模式多通道DMA采集 中断模式和DMA模式进行单通道模拟量采集&#xff0c;这节继续学习独立模式多通道DMA采集&#xff0c;使用到的引脚有之前使用的PC3&#xff08;电位器&#xff09;&#xff0c;PA4&#xff08;光敏…

【刷题笔记】串联所有单词的子串||暴力通过||滑动窗口

串联所有单词的子串 1 题目描述 https://leetcode.cn/problems/substring-with-concatenation-of-all-words/ 给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。 s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。 …

arXiv学术速递笔记11.29

文章目录 一、自动驾驶/目标检测Improving Lane Detection Generalization: A Novel Framework using HD Maps for Boosting DiversityTowards Full-scene Domain Generalization in Multi-agent Collaborative Birds Eye View Segmentation for Connected and Autonomous Driv…