YOLOv8改进 | 2023 | 通过RFAConv重塑空间注意力(深度学习的前沿突破)

一、本文介绍

本文给大家带来的改进机制是RFAConv,全称为Receptive-Field Attention Convolution,是一种全新的空间注意力机制。与传统的空间注意力方法相比,RFAConv能够更有效地处理图像中的细节和复杂模式(适用于所有的检测对象都有一定的提点)。这不仅让YOLOv8在识别和定位目标时更加精准,还大幅提升了处理速度和效率。本文章深入会探讨RFAConv如何在YOLOv8中发挥作用,以及它是如何改进在我们的YOLOv8中的。我将通过案例的角度来带大家分析其有效性(结果训练结果对比图)

适用检测目标:亲测所有的目标检测均有一定的提点

推荐指数:⭐⭐⭐⭐⭐

  专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

效果回顾展示->

因为资源有限我发的文章都要做对比实验所以本次实验我只用了一百张图片检测的是火灾训练了一百个epoch,该结果只能展示出该机制有效,但是并不能产生决定性结果,因为具体的效果还要看你的数据集和实验环境所影响(这次找的数据集质量好像不太好效果波动很大)。 

图片分析->在我的数据集上大家可以看到mAP50大概增长了0.4左右。

目录

一、本文介绍

二、RFAConv结构讲解

2.1、RAFCAonv主要思想

2.2、感受野空间特征

2.3、解决参数共享问题

2.4、提高大尺寸卷积核的效率

三、RFAConv代码

3.1 RFAConv本地代码

3.2 修改RFAConv的bug 

3.3 修改了RFAConv的C2f和Bottleneck模块

四、手把手教你添加RFAConv和C2f_RFAConv模块

4.1 RFAConv的添加教程

4.2 RFAConv的yaml文件和训练截图

4.2.1 RFAConv的yaml文件

4.2.2 RFAConv的训练过程截图 

五、RFAConv可添加的位置

5.1 推荐RFAConv可添加的位置 

5.2 图示RFAConv可添加的位置 

六、本文总结


二、RFAConv结构讲解

论文地址:官方论文地址

代码地址:官方代码地址


2.1、RAFCAonv主要思想

RFAConv(Receptive-Field Attention Convolution)的主要思想是将空间注意力机制与卷积操作相结合,从而提高卷积神经网络(CNN)的性能。这种方法的核心在于优化卷积核的工作方式,特别是在处理感受野内的空间特征时。以下是RFAConv的几个关键思想:

1. 感受野空间特征的重点关注:RFAConv特别关注于感受野内的空间特征,不仅仅局限于传统的空间维度。这种方法允许网络更有效地理解和处理图像中的局部区域,从而提高特征提取的精确性。

2. 解决参数共享问题:在传统的CNN中,卷积核在处理不同区域的图像时共享同样的参数,这可能限制了模型对于复杂模式的学习能力。RFAConv通过引入注意力机制,能够更灵活地调整卷积核的参数,针对不同区域提供定制化的处理。

3. 提高大尺寸卷积核的效率:对于大尺寸卷积核,仅使用标准的空间注意力可能不足以捕获所有重要的信息。RFAConv通过提供有效的注意力权重,使得大尺寸卷积核能够更有效地处理图像信息。

总结:RFAConv通过结合空间注意力和感受野特征的处理,为卷积神经网络提供了一种新的、更高效的方式来提取和处理图像特征,尤其是在处理复杂或大尺寸的输入时。

下面我来分别介绍这几点->


2.2、感受野空间特征

感受野空间特征是指卷积神经网络(CNN)中,卷积层能“看到”的输入数据的局部区域。在CNN中,每个卷积操作的输出是基于输入数据的一个小窗口,或者说是一个局部感受野。这个感受野定义了卷积核可以接触到的输入数据的大小和范围。

感受野的概念对于理解CNN如何从输入数据中提取特征是至关重要的。在网络的初级层,感受野通常很小,允许模型捕捉到细微的局部特征,如边缘和角点。随着数据通过更多的卷积层,通过层层叠加,感受野逐渐扩大,允许网络感知到更大的区域,捕捉到更复杂的特征,如纹理和对象的部分。

在CNN的上下文中,感受野空间特征指的是每个卷积操作能够感知的输入图像区域中的特征。这些特征可以包括颜色、形状、纹理等基本视觉元素。在传统的卷积网络中,感受野通常是固定的,并且每个位置的处理方式都是相同的。但是,如果网络能够根据每个区域的不同特点来调整感受野的处理方式,那么网络对特征的理解就会更加精细和适应性更强。

上图展示了一个3x3的卷积操作。在这个操作中,特征是通过将卷积核与同样大小的感受野滑块相乘然后求和得到的。具体来说,输入图像X上的每一个3x3的区域(即感受野)都被一个3x3的卷积核K处理。每个感受野内的元素,X_{i,j}(其中i和j表示在感受野内的位置)都与卷积核K内对应位置的权重,K_{i,j}相乘,然后这些乘积会被求和得到一个新的特征值F。这个过程在整个输入图像上滑动进行,以生成新的特征图。这种标准的卷积操作强调了局部连接和权重共享的概念,即卷积核的权重对整个输入图。

总结:在RFAConv中,感受野空间特征被用来指导注意力机制,这样模型就不仅仅关注于当前层的特定区域,而是根据输入数据的复杂性和重要性动态调整感受野。通过这种方式,RFAConv能够为不同区域和不同尺寸的感受野提供不同的处理,使得网络能够更加有效地捕捉和利用图像中的信息。


2.3、解决参数共享问题

RFAConv卷积以解决参数共享问题,RFAConv通过引入注意力机制,允许网络为每个感受野生成特定的权重。这样,卷积核可以根据每个感受野内的不同特征动态调整其参数,而不是对所有区域一视同仁。

具体来说,RFAConv利用空间注意力来确定感受野中每个位置的重要性,并据此调整卷积核的权重。这样,每个感受野都有自己独特的卷积核,而不是所有感受野共享同一个核。这种方法使得网络能够更细致地学习图像中的局部特征,从而有助于提高整体网络性能。

通过这种方法,RFAConv提升了模型的表达能力,允许它更精确地适应和表达输入数据的特征,尤其是在处理复杂或多变的图像内容时。

上图展示了一个卷积操作的过程,其中卷积核参数 K_{i}通过将注意力权重 A_{i}与卷积核参数 K 相乘得到。这意味着每个感受野滑块的卷积操作都有一个独特的卷积核参数,这些参数是通过将通用的卷积核参数与特定于该位置的注意力权重相结合来获得的。

具体地说,这个过程将注意力机制与卷积核相结合,为每个感受野位置产生一个定制化的卷积核。例如,图中的 Kernel 1、Kernel 2 和 Kernel 3 分别是通过将通用卷积核参数 K 与对应的注意力权重 A_{1}​、A_{2}​ 和 A_{3}​ 相乘得到的。这种方法允许网络在特征提取过程中对不同空间位置的特征赋予不同的重要性,从而增强了模型对关键特征的捕获能力。

总结:这样的机制增加了卷积神经网络的表达能力,使得网络能够更加灵活地适应不同的输入特征,并有助于提高最终任务的性能。这是一种有效的方式来处理传统卷积操作中的参数共享问题,因为它允许每个位置的卷积核适应其处理的特定区域。


2.4、提高大尺寸卷积核的效率

RFAConv通过利用感受野注意力机制来动态调整卷积核的权重,从而为每个区域的特征提取提供了定制化的关注度。这样,即便是大尺寸卷积核,也能够更加有效地捕捉和处理重要的空间特征,而不会对不那么重要的信息分配过多的计算资源。

具体来说,RFAConv方法允许网络识别和强调输入特征图中更重要的区域,并且根据这些区域调整卷积核的权重。这意味着网络可以对关键特征进行重加权,使得大尺寸卷积核不仅能够捕捉到广泛的信息,同时也能够集中计算资源在更有信息量的特征上,从而提升了整体的处理效率和网络性能。

上图描述了感受野滑块中特征的重叠,这是在标准卷积操作中常见的现象。特征的重叠导致了注意力权重的共享问题,意味着不同的感受野可能会对相同的输入特征使用相同的注意力权重。

在图中,F_{1}​,F_{2}​,...F_{N}代表不同感受野滑块内的特征输出,它们是通过将输入特征 X 与对应的注意力权重 A 以及卷积核 K 的权重进行逐元素乘法运算后得到的。例如,F_{1} 是通过将 X_{11}乘以对应的注意力权重 A_{11}和卷积核权重 K_{1}计算得到的,以此类推。

该图强调了每个感受野滑块内的卷积操作的参数不应该完全共享,而是应该根据每个特定区域内的特征和相应的注意力权重进行调整。这种调整允许网络对每个局部区域进行更加精细的处理,能够更好地捕捉和响应输入数据的特定特征,而不是简单地对整个图像应用相同的权重。这样的方法能够提升网络对特征的理解和表示,从而改善最终的学习和预测性。

总结:通过这种方法,RFAConv提升了模型的表达能力,允许它更精确地适应和表达输入数据的特征,尤其是在处理复杂或多变的图像内容时。这种灵活的参数调整机制为提高卷积神经网络的性能和泛化能力提供了新的途径。


三、RFAConv代码

3.1 RFAConv本地代码

该代码为RFAConv的本体,使用方式请看章节四。

from torch import nn
from einops import rearrangeclass RFAConv(nn.Module):  # 基于Unfold实现的RFAConvdef __init__(self, in_channel, out_channel, kernel_size=3):super().__init__()self.kernel_size = kernel_sizeself.unfold = nn.Unfold(kernel_size=(kernel_size, kernel_size), padding=kernel_size // 2)self.get_weights = nn.Sequential(nn.Conv2d(in_channel * (kernel_size ** 2), in_channel * (kernel_size ** 2), kernel_size=1,groups=in_channel),nn.BatchNorm2d(in_channel * (kernel_size ** 2)))self.conv = nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, padding=0, stride=kernel_size)self.bn = nn.BatchNorm2d(out_channel)self.act = nn.ReLU()def forward(self, x):b, c, h, w = x.shapeunfold_feature = self.unfold(x)  # 获得感受野空间特征  b c*kernel**2,h*wx = unfold_featuredata = unfold_feature.unsqueeze(-1)weight = self.get_weights(data).view(b, c, self.kernel_size ** 2, h, w).permute(0, 1, 3, 4, 2).softmax(-1)weight_out = rearrange(weight, 'b c h w (n1 n2) -> b c (h n1) (w n2)', n1=self.kernel_size,n2=self.kernel_size)  # b c h w k**2 -> b c h*k w*kreceptive_field_data = rearrange(x, 'b (c n1) l -> b c n1 l', n1=self.kernel_size ** 2).permute(0, 1, 3,2).reshape(b, c,h, w,self.kernel_size ** 2)  # b c*kernel**2,h*w ->  b c h w k**2data_out = rearrange(receptive_field_data, 'b c h w (n1 n2) -> b c (h n1) (w n2)', n1=self.kernel_size,n2=self.kernel_size)  # b c h w k**2 -> b c h*k w*kconv_data = data_out * weight_outconv_out = self.conv(conv_data)return self.act(self.bn(conv_out))


3.2 修改RFAConv的bug 

因为以上的代码不能够直接使用在我们的YOLOv8中会报错而且参数对不上,我对其外层嵌套了一个模块。 

class RFAConv_yolov8(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, g=1, dilation=1):super().__init__()self.conv = Conv(in_channels, out_channels, k=1)self.RFAConv = RFAConv(out_channels, out_channels, kernel_size=3)self.bn = nn.BatchNorm2d(out_channels)self.gelu = nn.GELU()def forward(self, x):x = self.conv(x)x = self.RFAConv(x)x = self.gelu(self.bn(x))return x


3.3 修改了RFAConv的C2f和Bottleneck模块

class Bottleneck_RFAConv(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, andexpansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = RFAConv_yolov8(c_, c2, k[1], 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):"""'forward()' applies the YOLO FPN to input data."""return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C2f_RFAConv(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,expansion."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck_RFAConv(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass through C2f layer."""x = self.cv1(x)x = x.chunk(2, 1)y = list(x)# y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))


四、手把手教你添加RFAConv和C2f_RFAConv模块

4.1 RFAConv的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

这个卷积也可以放在C2f和Bottleneck中进行使用可以即插即用,个人觉得放在Bottleneck中效果比较好。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头


4.2 RFAConv的yaml文件和训练截图

4.2.1 RFAConv的yaml文件

下面的配置文件为我修改的RFAConv的位置。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f_RFAConv, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f_RFAConv, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f_RFAConv, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)


4.2.2 RFAConv的训练过程截图 

下面是添加了RFAConv的训练截图。

下面的是将RFAConv机制添加到了C2f和Bottleneck。

(最近有人说我改的代码是没有发全的,我不知道这群人是怎么说出这种话的,希望大家如果用我的代码成功的可以在评论区支持一下,我也好发更多的改进毕竟免费给大家看。同时有问题皆可在评论区留言我看到都会回复) 

​​


五、RFAConv可添加的位置

5.1 推荐RFAConv可添加的位置 

RFAConv是一种即插即用的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入RFAConv

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C2f_RFAConv可以帮助模型更有效地融合不同层次的特征。

  3. 检测头中的卷积:在最终的输出层前加入RFAConv可以使模型在做出最终预测之前,更加集中注意力于最关键的特征。

文字大家可能看我描述不太懂,大家可以看下面的网络结构图中我进行了标注。


5.2 图示RFAConv可添加的位置 

​​


六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~)如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/186886.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springboot+jsp+java房屋销售出租赁网站的ssm设计与实现7xcvq

三、研究方案(主要研究内容、目标、研究方法等) 主要研究内容 房屋租售网站采用的开发框架为springboot框架,也就是Spring mvc、Spring、MyBatis这三个框架,页面设计用的是jsp技术作为动态页面文件设计,jsp文件里可以对…

【多传感器融合】BEVFusion: 激光雷达和视觉融合框架 NeurIPS 2022

前言 BEVFusion其实有两篇, 【1】BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework. NeurIPS 2022 | 北大&阿里提出 【2】BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation 2022 | MIT提出 本文先分…

Google Chrome访问出现 NET::ERR_CERT_INVALID

Google Chrome访问出现 NET::ERR_CERT_INVALID然后访问不了当前网站,这个是由于证书失效了,临时解决方式是: 第一种方案: 在Chrome提示“您的连接不是私密连接”页面的空白区域点击一下,然后输入“thisisunsafe”(页…

人工智能 - 目标检测:发展历史、技术全解与实战

目录 一、早期方法:滑动窗口和特征提取滑动窗口机制工作原理 特征提取方法HOG(Histogram of Oriented Gradients)SIFT(Scale-Invariant Feature Transform) 二、深度学习的兴起:CNN在目标检测中的应用CNN的…

[c++]—string类___深度学习string标准库成员函数与非成员函数

要相信别人能做出来自己一定可以做出来,只不过是时间没到而已 目录 🚩string类对象capacity操作 💻reserve()保留 💻resize() 🚩string类对象元素访问操作 💻operator[]和at() 💻operator…

如何让嵌入式开发板使用主机的网络

配置网络 1.开发板配置 将开发板和主机用网线连接 安装 net-tools,使用 ifconfig 命令 或者使用 ip 命令 su root ip a 发现一个 eth0的网口 ip link set xxx up 有多个网口时可以用该命令启用某一个网口 vim /etc/netplan/00-installer-config.yaml写入以下…

HTML—列表、表格、表单

1、列表 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表 1.1 无序列表 作用:布局排列整齐的不需要规定顺序的区域 标签:ul 嵌套 li,ul 是无序列表,li 是列表条目 注意事项&#…

FPGA falsh相关知识总结

1.存储容量是128M/8 Mb16MB 2.有256个sector扇区*每个扇区64KB16MB 3.一页256Byte 4.页编程地址0256 5:在调试SPI时序的时候一定注意,miso和mosi两个管脚只要没发送数据就一定要悬空(处于高组态),不然指令会通过两…

【双向链表的实现】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 1. 双向链表的结构 2. 双向链表的实现 2.1 头文件 ——双向链表的创建及功能函数的定义 2.2 源文件 ——双向链表的功能函数的实现 2.3 源文件 ——双向链表功能的…

Jmeter测试移动接口性能 —— 压测

一般的公司都想知道自己产品的性能瓶颈和以及提升性能,以期大流量来了还撑得住。其实性能测试很难,难点在你不知道性能要达到怎样的需求。难点在于你没有实际的环境场景给你测试,总不能给线上环境你测试吧? 难点在于找性能瓶颈&a…

kafka C++实现消费者

文章目录 1 Kafka 消费者的逻辑2 Kafka 的C API2.1 RdKafka::Conf2.2 RdKafka::Event2.3 RdKafka::EventCb2.4 RdKafka::TopicPartition2.5 RdKafka::RebalanceCb2.6 RdKafka::Message2.7 RdKafka::KafkaConsumer(核心) 3 Kafka 消费者客户端开发3.1 必要…

Linux操作系统虚拟机安装(图文详解)

目录 前言 Linux系统介绍 虚拟机安装 1.安装步骤 2.破解激活步骤 3.创建Linux系统虚拟机 虚拟机的相关设置 1.基础设置 2.语言设置为中文 前言 今天我们开始学习Linux操作系统的安装虚拟机以及相关的Linux的环境配置,后面我还会继续发布Linux系统的相关基…

手机电脑同步的时间管理工具

有不少上班族会发现自己有太多的工作要完成,并且在工作中往往会浪费很多时间在无关紧要的事情上,而不是专注于真正重要的任务,因此没有足够的时间来完成所有任务。在这种情况下,我们可以使用时间管理软件来帮助自己优先考虑重要的…

IIS post .html页面报 405错误

IIS是不允许本地文件默认post请求的,windows10系统下的IIS(10.0版)默认也是不能 post请求\*.html或\*.json文件的 1 需要配置一下,配置如下: 2 双击处理程序映射,添加托管处理程序: 3 请求路径 …

es6 语法 解构 拼接 扩展运算 数组降为 symbol 迭代器 生成器 定时器 map 映射 对象字面量 私有属性 构造函数继承

es6 语法 解构 拼接 扩展运算 数组降为 symbol 迭代器 生成器 定时器 map 映射 对象字面量 私有属性 构造函数继承 promise async await 解构 // 解构var character {name:Brucezzz,pseudonym:Bruce,metadata:{age:32,gender:male,airbags: "说两句啊",airconditio…

springboot+jsp+java人才招聘网站4f21r

本基于springboot的人才招聘网站主要满足3种类型用户的需求,这3种类型用户分别为求职者、企业和管理员,他们分别实现的功能如下。 (1)求职者进入网站后可查看职位信息、企业信息以及职位新闻等,注册登录后可实现申请职…

在MySQL中如何存储一个IPv4地址?

在MySQL如何存储IPv4地址?这个在秋招面试的过程中被问到过,没有答上来,今天猛地想起了这个问题,做一下复盘。 一个IPv4地址是由32位二进制来表示的,用点分十进制表示可以划分为4部分,每部分占8位&#xff…

云时空社会化商业 ERP 系统 service SQL 注入漏洞复现

0x01 产品简介 时空云社会化商业ERP(简称时空云ERP) ,该产品采用JAVA语言和Oracle数据库, 融合用友软件的先进管理理念,汇集各医药企业特色管理需求,通过规范各个流通环节从而提高企业竞争力、降低人员成本…

『PyTorch学习笔记』分布式深度学习训练中的数据并行(DP/DDP) VS 模型并行

分布式深度学习训练中的数据并行(DP/DDP) VS 模型并行 文章目录 一. 介绍二. 并行数据加载2.1. 加载数据步骤2.2. PyTorch 1.0 中的数据加载器(Dataloader) 二. 数据并行2.1. DP(DataParallel)的基本原理2.1.1. 从流程上理解2.1.2. 从模式角度理解2.1.3. 从操作系统角度看2.1.…

11-22 SSM3

书城分页查询 使用mybatis分页插件: 请完成登陆注册 -> 跳转到首页 解决前端上架时间点击切换 以及侧边栏点击由背景颜色的改变 完成超链接的绑定点击时间 -> jquery $(document).ready(function() { // 初始化上架时间状态为 true(上架&…