opencv 31-图像平滑处理-方框滤波cv2.boxFilter()

方框滤波(Box Filtering)是一种简单的图像平滑处理方法,它主要用于去除图像中的噪声和减少细节,同时保持图像的整体亮度分布。

方框滤波的原理很简单:对于图像中的每个像素,将其周围的一个固定大小的邻域内的像素值取平均,然后将这个平均值赋值给当前像素。这个邻域通常是一个正方形,称为方框或窗口。方框滤波相当于用一个均值滤波器对图像进行滤波。

与均值滤波的不同在于,方框滤波不会计算像素均值。
在均值滤波中,滤波结果的像素值是任意一个点的邻域平均值,等于各邻域像素值之和除以邻域面积。

而在方框滤波中,可以自由选择是否对均值滤波的结果进行归一化,即可以自由选择滤波结果是邻域像素值之和的平均值,还是邻域像素值之和

我们以 5×5 的邻域为例,在进行方框滤波时,如果计算的是邻域像素值的均值,则滤波关系如图 7-15 所示。

在这里插入图片描述

仍然以 5×5 的邻域为例,在进行方框滤波时,如果计算的是邻域像素值之和,则滤波关系
如图 7-16 所示。
在这里插入图片描述

根据上述关系,如果计算的是邻域像素值的均值,则使用的卷积核为:

在这里插入图片描述
如果计算的是邻域像素值之和,则使用的卷积核为:

在这里插入图片描述
在 OpenCV 中,实现方框滤波的函数是 cv2.boxFilter(),其语法格式为:

dst = cv2.boxFilter( src, ddepth, ksize, anchor, normalize, borderType
)

式中:
 dst 是返回值,表示进行方框滤波后得到的处理结果。

 src 是需要处理的图像,即原始图像。它能够有任意数量的通道,并能对各个通道独立处理。图像深度应该是 CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F 中的一种。

 ddepth 是处理结果图像的图像深度,一般使用-1 表示与原始图像使用相同的图像深度。

 ksize 是滤波核的大小。滤波核大小是指在滤波处理过程中所选择的邻域图像的高度和宽度。

例如,滤波核的值可以为(3,3),表示以 3×3 大小的邻域均值作为图像均值滤波处理的结果,如下式所示。

在这里插入图片描述
 anchor 是锚点,其默认值是(-1, -1),表示当前计算均值的点位于核的中心点位置。
该值使用默认值即可,在特殊情况下可以指定不同的点作为锚点。

 normalize 表示在滤波时是否进行归一化(这里指将计算结果规范化为当前像素值范围内的值)处理,该参数是一个逻辑值,可能为真(值为 1)或假(值为 0)。

 当参数 normalize=1 时,表示要进行归一化处理,要用邻域像素值的和除以面积。
 当参数 normalize=0 时,表示不需要进行归一化处理,直接使用邻域像素值的和。

通常情况下,针对方框滤波,卷积核可以表示为:
在这里插入图片描述
上述对应关系为:

在这里插入图片描述
例如,针对 5×5 邻域,当参数 normalize=1 时,要进行归一化处理,此时计算的就是均值滤波。
这种情况下,函数 cv2.boxFilter()和函数 cv2.blur()的作用是一样的。

此时,对应的卷积核为:

在这里插入图片描述
同样针对 5×5 邻域,当参数 normalize=0 时,不进行归一化处理,此时滤波计算的是邻域像素值之和,使用的卷积核是:

在这里插入图片描述
当 normalize=0 时,因为不进行归一化处理,因此滤波得到的值很可能超过当前像素值范围的最大值,从而被截断为最大值。

这样,就会得到一幅纯白色的图像。

 borderType 是边界样式,该值决定了以何种方式处理边界。

通常情况下,在使用方框滤波函数时,对于参数 anchor、normalize 和 borderType,直接采
用其默认值即可。因此,函数 cv2.boxFilter()的常用形式为:

dst = cv2.boxFilter( src, ddepth, ksize )

实验1: 针对噪声图像,对其进行方框滤波,显示滤波结果

代码如下:

import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.boxFilter(o,-1,(5,5))
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:
在本例中,方框滤波函数对 normalize 参数使用了默认值。在默认情况下,该值为 1,表示要进行归一化处理。也就是说,本例中使用的是 normalize 为默认值 True 的 cv2.boxFilter()函数,
此时它和函数 cv2.blur()的滤波结果是完全相同的。如图 所示,左图是原始图像,右图是方框滤波结果图像
在这里插入图片描述

实验2:针对噪声图像,在方框滤波函数 cv2.boxFilter()内将参数 normalize 的值设置为 0,显示滤波处理结果。

代码如下:

import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.boxFilter(o,-1,(5,5),normalize=0)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

在本例中,没有对图像进行归一化处理。在进行滤波时,计算的是 5×5 邻域的像素值之和,图像的像素值基本都会超过当前像素值的最大值 255。因此,最后得到的图像接近纯白色,部分点处有颜色。部分点有颜色是因为这些点周边邻域的像素值均较小,邻域像素值在相加后仍然小于 255。

此时的图像滤波结果如图所示,左图是原始图像,右图是方框滤波后得到的处理结果
在这里插入图片描述

实验3:针对噪声图像,使用方框滤波函数 cv2.boxFilter()去噪,将参数 normalize 的值设置为 0,将卷积核的大小设置为 2×2,显示滤波结果

代码如下:

import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.boxFilter(o,-1,(2,2),normalize=0)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

在本例中,卷积核大小为 2×2,参数 normalize=0。因此,本例中方框滤波计算的是 2×2邻域的像素值之和,四个像素值的和不一定大于 255,因此在计算结果图像中有部分像素点不是白色。如图 所示,左图是原始图像,右图是方框滤波处理结果。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18627.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL安装 找不到 MSVCP100.dll

安装mysql5.6.51时,出现由于找不到 MSVCP100.dll,无法继续执行代码。重新安装程序可能会解决此问题。 这应该是缺少VS运行库文件导致的,运行库就是支持大部分程序运行的基础,由于很多常用软件都是采用 Microsoft Visual Studio 编…

刷题笔记 day2

力扣 1089 复写零 思路:双指针 第一步:利用指针 cur 去记录最后一位要复写的数 , 利用指针 dest 指向最后一位数所要复写的位置; 实现过程:最开始 cur 指向0,dest 指向 -1 , 当arr[cur] ! …

【UEC++学习】UE网络 - Replication、RPC

1. UE网络架构 (1)UE的网络架构是SC(Server - Client)的模式,这种模式的优势:这种模式让所有客户端都在服务器端进行安全验证,这样可以有效的防止客户端上的作弊问题。 (2&#xff…

Python(五十六)列表元素的排序操作

❤️ 专栏简介:本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中,我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 :本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…

数据结构初阶--栈和队列

目录 一.栈 1.栈的定义 2.顺序栈的功能实现 2.1.顺序栈的定义 2.2.顺序栈的初始化 2.3.顺序栈的判空 2.4.顺序栈的入栈 2.5.顺序栈的出栈 2.6.顺序栈的取栈顶元素 2.7.顺序栈的求栈的大小 2.8.顺序栈的销毁 2.9.完整程序 Stack.h Stack.c test.c 二.队列 1.队…

使用 Docker Compose 部署 Redis Cluster 集群,轻松搭建高可用分布式缓存

Redis Cluster(Redis 集群)是 Redis 分布式解决方案的一部分,它旨在提供高可用性、高性能和横向扩展的功能。Redis Cluster 能够将多个 Redis 节点组合成一个分布式集群,实现数据分片和负载均衡,从而确保在大规模应用场…

session反序列化+SoapClientSSRF+CRLF

文章目录 session反序列化SoapClientSSRFCRLF前言bestphps revengecall_user_func()方法的特性SSRFCRLF组合拳session反序列化 解题步骤总结 session反序列化SoapClientSSRFCRLF 前言 从一道题分析通过session反序列化出发SoapClientSSRF利用CRLF解题 bestphp’s revenge 首…

基于方向编码的模板匹配算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 ........................................................................... %选择移动个…

自适应巡航控制系统研究(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 💥1 概述 据统计, 我国交通事故造成的伤亡人数每年超过10万人, 其中驾驶员人为原因 (疲劳、酒驾、误操作等) 所致事故逐渐升高.汽车交通…

pycharm——制作k线图

K 线图 Candlestick Candlestick - Kline_itemstyle from pyecharts import options as opts from pyecharts.charts import Klinedata [[2320.26, 2320.26, 2287.3, 2362.94],[2300, 2291.3, 2288.26, 2308.38],[2295.35, 2346.5, 2295.35, 2345.92],[2347.22, 2358.98, 23…

安装skywalking并集成到微服务项目

文章目录 一、前言二、介绍1. 架构 三、安装skywalking服务端四、启动skywalking服务端五、微服务项目开发注册中心网关服务商品服务订单服务支付服务测试 六、下载java客户端七、微服务集成skywalking客户端1. idea启动2. 命令行启动3. 集成效果 八、skywalking客户端配置1. 配…

Python高阶技巧 正则表达式

正则表达式,又称规则表达式(Regular Expression),是使用单个字符串来描述、匹配某个句法规则的字符串,常被用来检索、替换那些符合某个模式(规则)的文本。 简单来说,正则表达式就是使…

小程序学习(六):全局配置

1.全局配置文件及常用的配置项 全局配置-window 2.小程序窗口的组成部分 3.了解window节点常用的配置项 4.设置导航栏的标题 设置步骤:app.json->window->navigationBarTitleText 5.设置导航栏的背景色 背景颜色不支持red这种文字 6.设置导航栏的标题颜色 注意:navigat…

SpringBoot笔记:SpringBoot集成Dataway

文章目录 1、什么是 Dataway?2、主打场景3、技术架构4、整合SpringBoot4.1、maven 依赖4.2、初始化脚本4.3、整合 SpringBoot 5、Dataway 接口管理6、Mybatis 语法支持7、小结 1、什么是 Dataway? 官网地址:https://www.hasor.net/docs/guides/quickstart Da…

k8s kubeadm命令升级集群 从1.17升级到1.18

k8s kubeadm命令升级集群 从1.17升级到1.18 大纲 注意事项master节点执行升级命令master节点和node节点执行命令 注意事项 目标当前线上k8s集群版本是k8s1.17 想把k8s升级到1.18。注意k8s不能跨版本升级例如k8s1.17不能直接升级到k8s1.19,需要先升级到1.18才后向…

faac内存开销较大,为方便嵌入式设备使用进行优化(valgrind使用)

faac内存开销较大,为方便嵌入式设备使用进行优化,在github上提了issues但是没人理我,所以就搞一份代码自己玩吧。 基于faac_1_30版本,原工程https://github.com/knik0/faac faac内存优化: faac内存开销较大,为方便嵌入…

意外:WPS编程新工具,不用编程,excel用户:可以不用VBA啦

来来来,拓宽一下视野! 别总以为excel和WPS只能用VBA编程,也别总是想着ACCESS这些老生常谈的工具。其实对于电子表格高级用户来讲,不会VBA,不用ACCESS,也一样可以解决复杂问题或者高级应用。 尤其是WPS用户…

【腾讯云 Cloud Studio 实战训练营】CloudStudio体验真正的现代化开发方式,双手插兜不知道什么叫对手!

CloudStudio体验真正的现代化开发方式,双手插兜不知道什么叫对手! 文章目录 CloudStudio体验真正的现代化开发方式,双手插兜不知道什么叫对手!前言出现的背景一、CloudStudio 是什么?二、CloudStudio 的特点三、CloudS…

PostgreSql 锁

一、概述 在 PostgreSQL 事务中提到,多个用户访问相同数据时可能出现脏读,不可重复度,幻读,更新丢失的问题,为解决这些问题,定义了不同的隔离级别,而隔离级别的具体实现,依靠的就是数…

钉钉群消息推送

1. 添加钉钉群机器人 PC端登录(当前版本手机端无法进行推送关键词设置),群设置--> 机器人 --> webhook进行安全设置复制webhook对应的url 2. 群消息推送 钉钉群消息支持纯文本和markdown类型 2.1 调用示例源码 import com.alibaba.…