从原理和公式出发:python实现One_Way_ANOVA

文章目录

  • 目的:python实现one way ANOVA 单因素方差分析
    • 1. 代码流程
    • 2. python代码实现
      • 0 主要的函数
      • 1 加载数据
      • 2 查看数据统计结果
      • 3 数据处理及可视化
      • 4 方差分析
        • 4.1 模型拟合
        • 4.2 单因素方差分析
      • 5 Post Hoc t-test组间比较分析
      • 6 根据定义自行分解计算对比调用函数的结果
      • 7 获取F分布对应的P值
    • 3. 方差分析公式及原理参考

目的:python实现one way ANOVA 单因素方差分析

方差分析 (Analysis of Variance, ANOVA) 是一种用于比较两个或多个样本均值
是否有显著差异的统计方法。它通过比较组间变异组内变异的大小关系,来判
样本均值是否有显著差异
请添加图片描述

1. 代码流程

a. 通过调用python的包来进行方差分析
b. 根据公式进行方差分析
c. 对比两种方法(工具包与手算)的结果,结果发现:一致
d. 最后附上方差分析的原理和计算公式

2. python代码实现

0 主要的函数

在这里插入图片描述

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as snsfrom scipy import stats                       # 里面有方差齐性检验方差
from statsmodels.formula.api import ols       # 最小二乘法拟合
from statsmodels.stats.anova import anova_lm  # 方差分析import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

在这里插入图片描述

1 加载数据

dataD = {'treat1':[390,410,372,382,None],'treat2':[375,348,354,364,362],'treat3':[413,383,408,None,None]}
data = pd.DataFrame(dataD)
data
treat1treat2treat3
0390.0375413.0
1410.0348383.0
2372.0354408.0
3382.0364NaN
4NaN362NaN

2 查看数据统计结果

data.describe()
treat1treat2treat3
count4.0000005.0000003.000000
mean388.500000360.600000401.333333
std16.11417610.28591316.072751
min372.000000348.000000383.000000
25%379.500000354.000000395.500000
50%386.000000362.000000408.000000
75%395.000000364.000000410.500000
max410.000000375.000000413.000000

3 数据处理及可视化

我们为了方便计算,将所有的数据合成一列,并画一下箱线图看一下

data_melt = data.melt()
data_melt.columns = ['Treat', 'value']
print(data_melt)
     Treat  value
0   treat1  390.0
1   treat1  410.0
2   treat1  372.0
3   treat1  382.0
4   treat1    NaN
5   treat2  375.0
6   treat2  348.0
7   treat2  354.0
8   treat2  364.0
9   treat2  362.0
10  treat3  413.0
11  treat3  383.0
12  treat3  408.0
13  treat3    NaN
14  treat3    NaN
import seaborn as sns
# plt.figure(dpi=600)
sns.boxplot(data = data_melt, x = 'Treat', y = 'value', palette = 'pastel',  # 控制箱子颜色)

请添加图片描述

4 方差分析

4.1 模型拟合
from statsmodels.formula.api import ols                    # 最小二乘法拟合
from statsmodels.stats.anova import anova_lm               # 方差分析
from statsmodels.stats.multicomp import pairwise_tukeyhsd  # post Hoc t_testmodel = ols('value ~C(Treat)', data = data_melt).fit()  # 最小二乘法拟合
# ols模型拟合的参数
print(model.params)# 模型拟合的均值:
# mean_treat1 = 388.5
# mean_treat2 = 388.5 - 27.9 = 360.6
# mean_treat3 = 388.5 + 12.833 = 401.33## 实际的均值:
# mean_treat1 = 388.500000	
# mean_treat2 = 360.600000	
# mean_treat3 = 401.333333
Intercept             388.500000
C(Treat)[T.treat2]    -27.900000
C(Treat)[T.treat3]     12.833333
dtype: float64

无论是普通线性模型还是广义线性模型,预测的都是自变量x取特定值时因变量y的平均值。

print(model.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  value   R-squared:                       0.673
Model:                            OLS   Adj. R-squared:                  0.600
Method:                 Least Squares   F-statistic:                     9.257
Date:                Thu, 30 Nov 2023   Prob (F-statistic):            0.00655
Time:                        16:43:18   Log-Likelihood:                -46.814
No. Observations:                  12   AIC:                             99.63
Df Residuals:                       9   BIC:                             101.1
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
======================================================================================coef    std err          t      P>|t|      [0.025      0.975]
--------------------------------------------------------------------------------------
Intercept            388.5000      6.910     56.224      0.000     372.869     404.131
C(Treat)[T.treat2]   -27.9000      9.271     -3.010      0.015     -48.871      -6.929
C(Treat)[T.treat3]    12.8333     10.555      1.216      0.255     -11.044      36.710
==============================================================================
Omnibus:                        0.469   Durbin-Watson:                   2.839
Prob(Omnibus):                  0.791   Jarque-Bera (JB):                0.509
Skew:                           0.080   Prob(JB):                        0.775
Kurtosis:                       2.004   Cond. No.                         3.80
==============================================================================Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
4.2 单因素方差分析
anova_table = anova_lm(model, type = 2)                 # 方差分析
pd.DataFrame(anova_table)                               # 查看方差分析结果
dfsum_sqmean_sqFPR(>F)
C(Treat)2.03536.0500001768.0250009.2573930.006547
Residual9.01718.866667190.985185NaNNaN

参数解释:

  1. df: degree of freedom 自由度:自由度是你现有数据中包含的可能性。

    • 例1:为什么当你求全班50个同学身高总和的时候自由度是49?
      因为如果把学号1到学号49的同学身高全都固定下来, 比方说总和为83米,而全班50个人的身高总和,为84.7米,
      那么第50个同学的身高必须为1.7米,没有任何自由变化的余地。
    • 例2:假设有三个数字,A+B+C=10,假设A为任意数取8,B为任意数取2,那么c就是0 这个等式才能成立,这个等式当中有三个未知量,
      但是可以有自由变换的数值只有两个,所以这个式子自由度就是3-1=2,所以样本当中能自由变化的数据个数叫做自由度。

    对于本案例:

    • K = 3: 共有3组,treat1,treat2,treat3。
    • n = 12: 3组共有12个测量值
    • df_C(Treat): K-1 = 3-1=2
    • df_Residual: n-k = 12-3 = 9
  2. sum_sq: error sum of square 误差平方和

    • 表示实验误差大小的偏差平方和,在相同的条件下各次测定值xi对测定平均值x的偏差平方后再加和∑(xi-x)2
  3. mean_sq: Mean Squared Error 均方误差

    • 均方误差是指参数估计值与参数真值之差平方的期望值
  • 可以发现,treat组间存在显著性差异,p=0.006547 < 0.5
    因为对比的组别超过三个,并且呈现出显著性差异,所以考虑使用事后检验(post hoc)进一步对比具体两两组别间的差异情况。

5 Post Hoc t-test组间比较分析

print(pairwise_tukeyhsd(data_melt['value'], data_melt['Treat']))
Multiple Comparison of Means - Tukey HSD, FWER=0.05
===============================================
group1 group2 meandiff p-adj lower upper reject
-----------------------------------------------
treat1 treat2      nan   nan   nan   nan  False
treat1 treat3      nan   nan   nan   nan  False
treat2 treat3      nan   nan   nan   nan  False
-----------------------------------------------

这里我们发现:

  • Q:单因素方差分析结果显著,但事后t检验两两比较均不显著,这样的结果合理吗?
  • A:合理,方差分析结果显著只说明组间可能存在显著差异,到底有无显著差异还要看事后比较

6 根据定义自行分解计算对比调用函数的结果

# 全部的算数平均数为:380.083
mean_all = ((390+410+372+382+375+348+354+364+362+413+383+408)/12)
# 3个品种的算数平均数分别为:388.5,360.6,401.33
print('总平均:\n', mean_all)
mean_k = data.mean(axis = 0)
print('组平均:\n', mean_k)
总平均:380.0833333333333
组平均:treat1    388.500000
treat2    360.600000
treat3    401.333333
dtype: float64
SS_A: 表示因素A的各水平之间的差异带来的影响,又被称为组间偏差。
SS_e: 表示随机误差的影响,又被称为组内偏差。
''' 组间方差 ''' 
SS_A = 4*(388.5-380.083)**2 + 5*(360.6-380.083)**2 + 3*(401.333-380.083)**2
df_A = 3-1  # 共3个水平
MS_A = SS_A/df_A
print("C(Treat) sum_sq:", SS_A)
print("C(Treat) mean_sq:", MS_A)''' 组内方差 ''' 
SS_e = (390-388.5)**2 + (410-388.5)**2 + (372-388.5)**2+(382-388.5)**2+\(375-360.6)**2+(348-360.6)**2+(354-360.6)**2+(364-360.6)**2+(362-360.6)**2+\(413-401.3)**2+(383-401.3)**2+(408-401.3)**2
df_e = 12-3  # 自由度:共12个样本,3个水平
MS_e = SS_e/df_e
print("Residual sum_sq:", SS_e)
print("Residual mean_sq:", MS_e)
C(Treat) sum_sq: 3536.007500999999
C(Treat) mean_sq: 1768.0037504999996Residual sum_sq: 1718.8700000000003
Residual mean_sq: 190.9855555555556
## 计算F
F = MS_A / MS_e
print("MS_A:", MS_A)
print("MS_e:", MS_e)
print("F:", F)
MS_A: 1768.0037504999996
MS_e: 190.9855555555556
F: 9.257264222716081

7 获取F分布对应的P值

from scipy.stats import f                           #导入f
PR = f.sf(F, df_A, df_e)
print(PR)m = df_A      #设置自由度m
n = df_e      #设置自由度n
alpha=0.05    #设置alphaa=f.ppf(q=alpha, dfn=m, dfd=n)                      #单侧左分位点
b=f.isf(q=alpha, dfn=m, dfd=n)                      #单侧右分位点
print('单侧左、右分位点:a=%.4f, b=%.4f'%(a, b))a1, b1=f.interval(1-alpha, dfn=m, dfd=n)              #双侧分位点
print('双侧左、右分位点:a=%.4f, b=%.4f'%(a1, b1))## 可以发现 MS_A/MS_e = 9.25 > Fm,n(0.05) = 5.7147  拒绝原假设H0,即存在组间差异
0.0065472957497462216
单侧左、右分位点:a=0.0516, b=4.2565
双侧左、右分位点:a=0.0254, b=5.7147

3. 方差分析公式及原理参考

请添加图片描述
在这里插入图片描述

原理参考:https://zhuanlan.zhihu.com/p/33357167 (方差分析的好文章)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/186022.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pandas-profiling / ydata-profiling介绍与使用教程

文章目录 pandas-profilingydata-profilingydata-profiling实际应用iris鸢尾花数据集分析 pandas-profiling pandas_profiling 官网&#xff08;https://pypi.org/project/pandas-profiling/&#xff09;大概在23年4月前发出如下公告&#xff1a; Deprecated pandas-profilin…

MediaPipe - 小记

文章目录 关于 MediaPipe 关于 MediaPipe Cross-platform, customizable ML solutions for live and streaming media. MediaPipe &#xff1a; 设备端机器学习框架 MediaPipe Studio : 提供标准化 task&#xff0c;你可以下载预训练模型来使用 MediaPipe Model Maker : 定制…

python中的字符串

字符串 字符串是编程语言中的一种基本数据类型&#xff0c;用于表示一串字符序列。在Python中&#xff0c;字符串是不可变的&#xff0c;也就是说一旦字符串被创建&#xff0c;就无法修改其中的字符。 Python中的字符串可以用单引号或双引号括起来&#xff0c;例如&#xff1…

构建SQL Server链接服务器:实现跨服务器数据访问及整合

点击上方蓝字关注我 在SQL Server数据库管理中&#xff0c;链接服务器是一项强大的功能&#xff0c;允许在一个SQL Server实例中访问另一个SQL Server实例的数据。这种功能为数据库管理员提供了灵活性&#xff0c;使其能够跨不同服务器进行数据交互&#xff0c;开辟了更多的应用…

RLHF:强化学习结合大预言模型的训练方式

RLHF (Reinforcement Learning from Human Feedback) 以强化学习方式依据人类反馈优化语言模型。 文章目录 一、简介二、一般的流程三、微调gpt介绍示例 参考文章 一、简介 强化学习从人类反馈中学习&#xff08;RLHF&#xff0c;Reinforcement Learning from Human Feedback&a…

【代码随想录】算法训练计划37

贪心 1、738. 单调递增的数字 题目&#xff1a; 输入: n 10 输出: 9 思路&#xff1a; func monotoneIncreasingDigits(n int) int {// 贪心&#xff0c;利用字符数组s : strconv.Itoa(n)ss : []byte(s)leng : len(ss)if leng < 1 {return n}for i:leng-1; i>0; i-- …

vscode集成git

1、首先电脑要安装git 打开git官网地址&#xff1a;Git进行下载&#xff0c;如下图界面&#xff1a; 如图片中描述&#xff1a;一般进入官网后会识别电脑对应系统&#xff08;识别出了我的电脑是Windows系统 。如果未识别到电脑系统&#xff0c;可在左侧选择自己电脑对应的系统…

主成分分析例题 (多元统计分析期末复习)

例一 给定X的协差阵&#xff0c;对其进行主成分分析, &#xff08;1&#xff09;求出每个主成分的贡献率&#xff1b; &#xff08;2&#xff09;求出每个原始变量的信息提取率&#xff1b; 解&#xff1a;对于主成分分析的题&#xff0c;一般来说&#xff0c;题目给定一个协方…

[vue3] 使用 vite 创建vue3项目的详细流程

一、vite介绍 Vite&#xff08;法语意为 “快速的”&#xff0c;发音 /vit/&#xff0c;发音同 “veet”) 是一种新型前端构建工具&#xff0c;能够显著提升前端开发体验&#xff08;热更新、打包构建速度更快&#xff09;。 二、使用vite构建项目 【学习指南】学习新技能最…

Elasticsearch:使用 ILM 示例运行降采样 (downsampling)

如果你对降采样还不是很熟的话&#xff0c;请阅读之前的文章 “Elasticsearch&#xff1a;对时间序列数据流进行降采样&#xff08;downsampling)”。这是一个简化的示例&#xff0c;可让你快速了解降采样如何作为 ILM 策略的一部分来减少一组采样指标的存储大小。 该示例使用典…

2021年3月9日 Go生态洞察:Go开发者调研结果解读

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

java对象 转换成json字符串 工具类 jackson

jackson概述 Jackson 是一个用于处理 JSON 数据的 Java 库&#xff0c;由 FasterXML 公司开发和维护。它提供了一组功能强大的 API&#xff0c;用于在 Java 对象和 JSON 数据之间进行高效的序列化&#xff08;将对象转换为 JSON 格式&#xff09;和反序列化&#xff08;将 JSO…

获取焦点后,样式异常的处理方法

问题 在使用monaco-editor 设置代码提示未正常显示&#xff0c;提示框出现&#xff0c;看不到内容&#xff0c;如图 看不到内容&#xff0c;有两种情况&#xff1a; 情况一&#xff1a;没有得到数据&#xff0c;所以没有展示&#xff1b; 情况二&#xff1a;得到了数据&#x…

数据预处理:随机裁剪放缩

随机裁剪放缩是一种数据增强技术&#xff0c;可以在训练神经网络时增加数据的多样性&#xff0c;提高模型的泛化能力。具体来说&#xff0c;随机裁剪放缩可以通过随机裁剪和缩放原始图片来生成多个不同的训练样本&#xff0c;从而增加数据集的大小和多样性。这种技术在图像分类…

Django之Auth认证模块

文章目录 一、简介二、Auth模块是什么三、Auth模块常用方法create_user() 创建普通用户authenticate() 用户认证auth.login(HttpResponse&#xff0c;user)登录状态保持is_authenticated 登录认证判断auth.loginout(reqeust)退出登录login_required() 登录认证装饰器check_pass…

MySQL之JDBC

&#x1f495;"我像离家的孤儿,回到了母亲的怀抱,恢复了青春。"&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;MySQL之JDBC 一.什么是JDBC? JDBC编程就是通过Java 代码来操纵数据库 数据库编程&#xff0c; 需要数据库服务器提供一些API供程序…

原来10张图就可以搞懂分布式链路追踪系统原理

分布式系统为什么需要链路追踪&#xff1f; 随着互联网业务快速扩展&#xff0c;软件架构也日益变得复杂&#xff0c;为了适应海量用户高并发请求&#xff0c;系统中越来越多的组件开始走向分布式化&#xff0c;如单体架构拆分为微服务、服务内缓存变为分布式缓存、服务组件通…

经典策略梯度算法

经典策略梯度算法 DDPG算法 DDPG 算法被提出的初衷其实是 DQN 算法的一个连续动作空间版本扩展。深度确定性策略梯度算法&#xff08; deep deterministic policy gradient&#xff0c;DDPG&#xff09;&#xff0c;是一种确定性的策略梯度算法。 由于DQN算法中动作是通过贪…

STM32CubeIDE(CUBE-MX)----快速移植FreeRTOS实战

文章目录 前言一、Freertos可视化配置二、生成代码三、实验现象总结 前言 FreeRTOS&#xff08;Real-Time Operating System&#xff09;是一个开源的实时操作系统内核&#xff0c;专注于嵌入式系统。它提供了一套用于管理任务、调度器、内存管理等的实时操作系统功能&#xf…

spring RedisTemplate RedisLockRegistry opsForXxx 基本使用总结以及介绍

一、基本介绍 RedisTemplate 为 spring 对 redis 操作的高度封装&#xff0c;基本已经满足所有使用场景。 若存在其他拓展使用我们可以自行封装工具类对基本操作进行组装。 RedisLockRegistry 对 redis 锁的一些封装 二、不同环境下依赖以及基本配置 2.1 spring-boot 下依赖…