基于YOLOv8深度学习的生活垃圾分类目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:生活垃圾检测在当今社会具有重要的意义。通过对生活垃圾进行准确识别和分类,可以提高垃圾处理的效率,减少环境污染,促进资源的循环利用。本文基于YOLOv8深度学习框架训练一个进行生活垃圾目标检测的模型,开发了一款生活垃圾检测系统,可检查常见的4类生活垃圾。并结合pythonPyQT5实现了UI界面,更方便进行功能的展示。该软件支持图片视频以及摄像头进行生活垃圾目标检测,并保存检测结果;。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

生活垃圾检测在当今社会具有重要的意义。随着人口的增长和生活水平的提高,生活垃圾的产生量逐年增加,给环境带来了严重的压力。垃圾分类和处理是解决这一问题的有效途径,而生活垃圾检测则是实现垃圾分类的基础。通过对生活垃圾进行准确识别和分类,可以提高垃圾处理的效率,减少环境污染,促进资源的循环利用。

生活垃圾检测的应用场景非常广泛,主要包括以下几个方面:
家庭场景:在家庭生活中,通过使用生活垃圾检测软件,可以帮助居民快速识别不同类型的垃圾,提高垃圾分类的准确性,为后续的垃圾处理提供便利。
社区场景:在社区层面,生活垃圾检测可以作为智能垃圾桶的辅助功能,帮助居民更好地进行垃圾分类。此外,还可以通过数据分析,了解社区内各类垃圾的产生情况,为垃圾处理设施的规划和建设提供依据。
城市管理场景:在城市管理层面,生活垃圾检测可以为政府部门提供实时、准确的垃圾数据,有助于优化垃圾收集、运输和处理流程,提高城市环境卫生水平。
教育宣传场景:生活垃圾检测软件可以作为一种教育工具,帮助公众了解垃圾分类的重要性和方法,提高环保意识,形成良好的垃圾分类习惯。

博主通过搜集关于生活垃圾的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的生活垃圾检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件基本界面如下图所示:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1.可以检测日常的生活垃圾,并且分为4种类别,分别是:'可回收垃圾','有害垃圾','厨余垃圾','其他垃圾';
2.支持图片、视频及摄像头进行检测,同时支持图片的批量检测
2. 界面可实时显示目标位置目标总数置信度用时等信息;
3. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于跌倒的各类图片,并使用LabelMe标注工具对每张图片中的跌倒目标边框(Bounding Box)进行标注。一共包含2743张图片,其中训练集包含1920张图片验证集包含548张图片测试集包含275张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入FallData目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\GarbageDetection\datasets\GarbageSorting\images\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\GarbageDetection\datasets\GarbageSorting\images\val  # val images (relative to 'path') 128 images
test: E:\MyCVProgram\GarbageDetection\datasets\GarbageSorting\images\test # val images (optional)# number of classes
nc: 4# Classes
names: ['recyclable waste','hazardous waste','kitchen waste','other waste']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/GarbageSorting/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型的4种分类的mAP@0.5都达到了0.84以上,平均值为0.876,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/fimg_217.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款生活垃圾分类目标检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的生活垃圾分类目标检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/183202.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++前缀和算法的应用:优化了6版的1324模式

本文涉及的基础知识点 C算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 本题其它解法 C前缀和算法的应用:统计上升四元组 类似题解法 包括题目及代码C二分查找算法:132 模式解法一枚举3C二分查找算法:…

k8s中Pod控制器简介,ReplicaSet、Deployment、HPA三种处理无状态pod应用的控制器介绍

目录 一.Pod控制器简介 二.ReplicaSet(简写rs) 1.简介 (1)主要功能 (2)rs较完整参数解释 2.创建和删除 (1)创建 (2)删除 3.扩容和缩容 &#xff08…

vuepress-----7、发布在GitHub

# 7、发布在GitHub 在你的项目中,创建一个如下的 deploy.sh 文件(请自行判断去掉高亮行的注释): #!/usr/bin/env sh# 确保脚本抛出遇到的错误 set -e# 生成静态文件 npm run docs:build# 进入生成的文件夹 cd docs/.vuepress/dist# 如果是发…

WebUI自动化学习(Selenium+Python+Pytest框架)004

接下来,WebUI基础知识最后一篇。 1.下拉框操作 关于下拉框的处理有两种方式 (1)按普通元素定位 安装普通元素的定位方式来定位下拉框,使用元素的操作方法element.click()方法来操作下拉框内容的选择 (2&#xff09…

PCB设计注意事项

四个二极管不能省略 pwm波跟电机频率不要是倍频 运放越靠近取样电阻越好 反向输入端跟输出端很敏感,有寄生电容就容易震荡 距离取样电阻近就会距离单片机远,那么线上会有寄生电容,这时候在输出端接一个10k电阻到地

深度学习-模型调试经验总结

1、 这句话的意思是:期望张量的后端处理是在cpu上,但是实际是在cuda上。排查代码发现,数据还在cpu上,但是模型已经转到cuda上,所以可以通过把数据转到cuda上解决。 解决代码: tensor.to("cuda")…

Redis 入门和环境搭建

认识Redis Redis是一种NoSQL数据库,以键值对形式存储数据,支持多种数据结构,包括字符串、哈希、列表、集合、有序集合等,使其适用于多种应用场景。由于所有数据都存储在内存中,Redis的读写性能非常高。同时&#xff0…

安网AC智能路由系统actpt_5g.data敏感信息泄露漏洞复现 [附POC]

文章目录 安网AC智能路由系统actpt_5g.data敏感信息泄露漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 安网AC智能路由系统actpt_5g.data敏感信息泄露漏洞复现 [附POC] 0x01 前言 免责声明:请勿利…

面试:说一下深拷贝,浅拷贝,引用拷贝吧;Object类中的clone是哪种呢?

目录 深拷贝、浅拷贝、引用拷贝Object类的clone()方法 深拷贝、浅拷贝、引用拷贝 ● 浅拷贝: 对基本数据类型进行值传递; 对引用类型,复制了一份引用类型的变量 里面存储的内存地址一样 指向的对象也一样。 ● 深拷贝:对基本数据…

kettle入门教程

一、概述 1.什么是kettle Kettle是一款开源的ETL(Extract-Transform-Load)工具,纯java编写,可以在Window、Linux、Unix上运行,绿色无需安装,数据抽取高效稳定。 2.kettle工程存储方式 (1)以XML形式存储 …

数据结构树与二叉树(5)Huffman树

#include <iostream> #include <stack> #include <queue>using namespace std;struct Node {char name ;int code[200];int num 0;//code的下标int weight 0;//权重&#xff08;次数&#xff09;Node* lchild;//左孩子Node* rchild;//右孩子Node* parent;N…

力扣 --- 三数之和

目录 题目描述&#xff1a; 思路描述&#xff1a; 代码&#xff1a; 提交结果&#xff1a; 官方代码&#xff1a; 官方提交结果&#xff1a; 题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k…

使用STM32 HAL库驱动烟雾传感器的设计和优化

STM32 HAL库是STMicroelectronics提供的针对STM32系列微控制器的一套硬件抽象层库&#xff0c;可以简化开发过程并提供对各种外设的支持。本文将介绍如何使用STM32 HAL库来驱动烟雾传感器&#xff0c;并对传感器数据采集和处理进行优化。将包括HAL库的初始化、模拟信号采集、数…

UE5、CesiumForUnreal实现加载GeoJson绘制多面(MultiPolygon)功能(支持点选高亮)

文章目录 1.实现目标2.实现过程2.1 数据与预处理2.2 GeoJson解析2.3 Mesh构建与属性存储2.4 核心代码2.5 材质2.6 蓝图应用测试3.参考资料1.实现目标 在之前的文章中,基于GeoJson数据加载,实现了绘制单面功能,但只支持单个要素Feature。本文这里实现对Geojson内所有面要素的…

Abaqus飞机起落架扭力臂拓扑优化

Abaqus飞机起落架扭力臂拓扑优化 Abaqus除了可以对结构进行强度分析&#xff0c;同样也自带强大的优化功能&#xff0c;下面通过一个简 单的实例演示在Abaqus中进行拓扑优化&#xff0c;另外&#xff0c;如果需要更加强大的拓扑优化仿真&#xff0c;可以 在TOSCA中进行。 定义接…

软件工程(九)

软件过程 定义 是软件生存周期中的一系列相关软件工程活动的集合&#xff0c;活动是任务的集合。 任务是将输入变换为输出的操作。 活动的执行可以是顺序的&#xff0c;重复的&#xff0c;并行的、嵌套的。 每一个软件过程由一组工作任务、项目里程碑、软件工程产品和交付…

最稳定的app分发平台怎么签到领取点数

第一步 登点击录《咕噜分发平台官网》 ●首页点击绿色箭头所指向的转盘 ●点击天数然后点击今日签到 ● 图下是我们的签到应该获得的点数 ● 图下是我们的签到累积获得的点数&#xff0c;以及连续签到的次数 控制台查看 查看签到获得点数通知 ●查看签到结果以及累积签到点数…

使用影刀指令+python实现简单的长文本乱序加密

本文意在利用影刀指令python代码&#xff0c;实现一种较为简单的长文本加密和解密&#xff0c;流程结构分为两步&#xff1a; 加密原理–是把字符转为列表&#xff0c;利用列表random模块中的shuffle函数做随机乱序。解密原理–是利用了列表的索引追踪&#xff0c;先前创建字典…

原神:夏洛蒂是否值得培养?全队瞬抬治疗量不输五星,但缺点也很明显

作为四星冰系治疗角色&#xff0c;夏洛蒂的实战表现可以说相当让人惊喜。不仅有相当有意思的普攻动作以及技能特效&#xff0c;而且她还有治疗和挂冰等功能性。下面就来详细聊聊夏洛蒂是否值得培养。 【治疗量让人惊喜&#xff0c;但也有缺点】 说实话&#xff0c;在使用夏洛蒂…

AcWing 3555:二叉树(北京大学考研机试题)→公共父结点

【题目来源】https://www.acwing.com/problem/content/description/3435/【题目描述】 如下图所示&#xff0c;由正整数 1, 2, 3, … 组成了一棵无限大的&#xff08;满&#xff09;二叉树。 1/ \2 3/ \ / \4 5 6 7 /\ /\ /\ /\ ... ... 从任意一个结点到根结点&…