学习参考来自:
- PyTorch实现Deep Dream
- https://github.com/duc0/deep-dream-in-pytorch
文章目录
- 1 原理
- 2 VGG 模型结构
- 3 完整代码
- 4 输出结果
- 5 消融实验
- 6 torch.norm()
1 原理
其实 Deep Dream大致的原理和【Pytorch】Visualization of Feature Maps(1)—— Maximize Filter 是有些相似的,前者希望整个 layer 的激活值都很大,而后者是希望某个 layer 中的某个 filter 的激活值最大。
这个图画的很好,递归只画了一层,下面来个三层的例子
CNN 处(def deepDream
),指定网络的某一层,固定网络权重,开启输入图片的梯度,迭代指定层输出的负l2范数(相当于最大化该层激活),以改变输入图片。
loss = -out.norm() # 让负的变小, 正的变大
核心代码,loss 为指定特征图输出的二范数的负值,相当于放大了响应,负数负的更多,正数正的更多,二范数才越大,损失才越小
2 VGG 模型结构
VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True) # LAYER_ID 28(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True) # LAYER_ID 30(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=1000, bias=True))
)
(27): ReLU(inplace=True) # LAYER_ID 28
(29): ReLU(inplace=True) # LAYER_ID 30
3 完整代码
完整代码如下
# 导入使用的库
import torch
from torchvision import models, transforms
import torch.optim as optim
import numpy as np
from matplotlib import pyplot
from PIL import Image, ImageFilter, ImageChops# 定义超参数
CUDA_ENABLED = True
LAYER_ID = 28 # the layer to maximize the activations through
NUM_ITERATIONS = 5 # number of iterations to update the input image with the layer's gradient
LR = 0.2"we downscale the image recursively, apply the deep dream computation, scale up, and then" \
"blend with the original image"NUM_DOWNSCALES = 20
BLEND_ALPHA = 0.5# 定义好一些变量和图像的转换
class DeepDream:def __init__(self, image):self.image = imageself.model = models.vgg16(pretrained=True)# print(self.model)if CUDA_ENABLED:self.model = self.model.cuda()self.modules = list(self.model.features.modules())# vgg16 use 224x224 imagesimgsize = 224self.mean = [0.485, 0.456, 0.406]self.std = [0.229, 0.224, 0.225]self.normalise = transforms.Normalize(mean=self.mean,std=self.std)self.transformPreprocess = transforms.Compose([transforms.Resize((imgsize, imgsize)),transforms.ToTensor(),self.normalise])self.tensorMean = torch.Tensor(self.mean)if CUDA_ENABLED:self.tensorMean = self.tensorMean.cuda()self.tensorStd = torch.Tensor(self.std)if CUDA_ENABLED:self.tensorStd = self.tensorStd.cuda()def toimage(self, img):return img * self.tensorStd + self.tensorMeandef deepDream(self, image, layer, iterations, lr):"""核心代码:param image::param layer::param iterations::param lr::return:"""transformed = self.transformPreprocess(image).unsqueeze(0) # 前处理输入都会 resize 至 224x224if CUDA_ENABLED:transformed = transformed.cuda()input_img = torch.autograd.Variable(transformed, requires_grad=True)self.model.zero_grad()optimizer = optim.Adam([input_img.requires_grad_()], lr=lr)for _ in range(iterations):optimizer.zero_grad()out = input_imgfor layerid in range(layer): # 28out = self.modules[layerid+1](out) # self.modules[28] ReLU(inplace=True)# out, torch.Size([1, 512, 14, 14])loss = -out.norm() # 负的变小,正的变大 -l2loss.backward()optimizer.step()# input_img.data = input_img.data + lr*input_img.grad.data# remove batchsize, torch.Size([1, 3, 224, 224]) ->torch.Size([3, 224, 224])input_img = input_img.data.squeeze()# c,h,w 转为 h,w,c 以便于可视化input_img.transpose_(0, 1) # torch.Size([224, 3, 224])input_img.transpose_(1, 2) # torch.Size([224, 224, 3])input_img = self.toimage(input_img) # torch.Size([224, 224, 3])if CUDA_ENABLED:input_img = input_img.cpu()input_img = np.clip(input_img, 0, 1)return Image.fromarray(np.uint8(input_img*255))# 可视化中间迭代的过程def deepDreamRecursive(self, image, layer, iterations, lr, num_downscales):""":param image::param layer::param iterations::param lr::param num_downscales::return:"""if num_downscales > 0:# scale down the imageimage_gauss = image.filter(ImageFilter.GaussianBlur(2)) # 高斯模糊half_size = (int(image.size[0]/2), int(image.size[1]/2)) # 长宽缩放 1/2if (half_size[0]==0 or half_size[1]==0):half_size = image.sizeimage_half = image_gauss.resize(half_size, Image.ANTIALIAS)# return deepDreamRecursive on the scaled down imageimage_half = self.deepDreamRecursive(image_half, layer, iterations, lr, num_downscales-1)print("Num Downscales: {}".format(num_downscales))print("====Half Image====", np.shape(image_half))# pyplot.imshow(image_half)# pyplot.show()# scale up the result image to the original sizeimage_large = image_half.resize(image.size, Image.ANTIALIAS)print("====Large Image====", np.shape(image_large))# pyplot.imshow(image_large)# pyplot.show()# Blend the two imageimage = ImageChops.blend(image, image_large, BLEND_ALPHA)print("====Blend Image====", np.shape(image))# pyplot.imshow(image)# pyplot.show()img_result = self.deepDream(image, layer, iterations, lr) # 迭代改变输入图片,max activationprint(np.shape(img_result))img_result = img_result.resize(image.size)print(np.shape(img_result))# pyplot.imshow(img_result)# pyplot.show()return img_resultdef deepDreamProcess(self):return self.deepDreamRecursive(self.image, LAYER_ID, NUM_ITERATIONS, LR, NUM_DOWNSCALES)if __name__ == "__main__":img = Image.open("cat.png").convert('RGB')# 生成img_deep_dream = DeepDream(img).deepDreamProcess()pyplot.title("Deep dream images")pyplot.imshow(img_deep_dream)pyplot.show()
4 输出结果
output
"""(224, 224, 3)(1, 1, 3)Num Downscales: 1====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 2====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 3====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 4====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 5====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 6====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 7====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 8====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 9====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 10====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 11====half Image==== (1, 1, 3)====Large Image==== (1, 1, 3)====Blend Image==== (1, 1, 3)(224, 224, 3)(1, 1, 3)Num Downscales: 12====half Image==== (1, 1, 3)====Large Image==== (2, 2, 3)====Blend Image==== (2, 2, 3)(224, 224, 3)(2, 2, 3)Num Downscales: 13====half Image==== (2, 2, 3)====Large Image==== (5, 5, 3)====Blend Image==== (5, 5, 3)(224, 224, 3)(5, 5, 3)Num Downscales: 14====half Image==== (5, 5, 3)====Large Image==== (11, 11, 3)====Blend Image==== (11, 11, 3)(224, 224, 3)(11, 11, 3)Num Downscales: 15====half Image==== (11, 11, 3)====Large Image==== (23, 23, 3)====Blend Image==== (23, 23, 3)(224, 224, 3)(23, 23, 3)Num Downscales: 16====half Image==== (23, 23, 3)====Large Image==== (47, 47, 3)====Blend Image==== (47, 47, 3)(224, 224, 3)(47, 47, 3)Num Downscales: 17====half Image==== (47, 47, 3)====Large Image==== (94, 94, 3)====Blend Image==== (94, 94, 3)(224, 224, 3)(94, 94, 3)Num Downscales: 18====half Image==== (94, 94, 3)====Large Image==== (188, 188, 3)====Blend Image==== (188, 188, 3)(224, 224, 3)(188, 188, 3)Num Downscales: 19====half Image==== (188, 188, 3)====Large Image==== (376, 376, 3)====Blend Image==== (376, 376, 3)(224, 224, 3)(376, 376, 3)Num Downscales: 20====half Image==== (376, 376, 3)====Large Image==== (753, 753, 3)====Blend Image==== (753, 753, 3)(224, 224, 3)(753, 753, 3)"""
部分结果展示
Num Downscales: 15
Num Downscales: 16
Num Downscales: 17
Num Downscales: 18
Num Downscales: 19
Num Downscales: 20
5 消融实验
NUM_DOWNSCALES = 50
NUM_ITERATIONS = 10
LAYER_ID = 23
LAYER_ID = 30
6 torch.norm()
torch.norm() 是 PyTorch 中的一个函数,用于计算输入张量沿指定维度的范数。具体而言,当给定一个输入张量 x 和一个整数 p 时,torch.norm(x, p) 将返回输入张量 x 沿着最后一个维度(默认为所有维度)上所有元素的 p 范数,p 默认为 2。
除了使用标量 p 之外,torch.norm() 还接受以下参数:
- dim:指定沿哪个轴计算范数,默认对所有维度计算。
- keepdim:如果设置为 True,则输出张量维度与输入张量相同,其中指定轴尺寸为 1;否则,将从输出张量中删除指定轴。
- out:可选输出张量结果。
PyTorch中torch.norm函数详解
import torchx = torch.tensor([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]], dtype=torch.float32)
print(x.norm())
print(x.norm(1))
print(x.norm(2))
output
tensor(25.4951)
tensor(78.)
tensor(25.4951)