动手学深度学习(一)预备知识

目录

一、数据操作

1. N维数组样例 

2. 访问元素

3. 基础函数

(1) 创建一个行向量

(2)通过张量的shape属性来访问张量的形状和元素总数

(3)reshape()函数

(4)创建全0、全1、其他常量或从特定分布中随机采样的数字组成的张量

(5)标准运算(张量间的标准运算,都是按元素运算)

(6)拼接函数cat

(7)求和函数sum

(8)矩阵的转置

(9)复制张量

(10)点积,矩阵-向量积和矩阵乘法

(11)范数

4.广播机制

5.转化为Numpy张量


课程推荐:跟李沐学AI的个人空间-跟李沐学AI个人主页-哔哩哔哩视频

一、数据操作

1. N维数组样例 

(1)0-d 标量

1.0

(2)1-d 向量

[1.0, 2.7, 3.4]

(3)2-d 矩阵

[[1.0, 2.7, 3.4][5.0, 0.2, 4.6][4.3, 8.5, 0.2]]

(4)3-d RGB图片(CxHxW)

[[[1.0,2.7,3.4][5.0,0.2,4.6][4.3,8.5,0.2]][[3.2, 5.7, 3.4][5.4, 6.2, 3.2][4.1, 3.5, 6.2]]]

(5)4-d 一个RGB图片批量(BxCxHxW)

(6)5-d 一个视频批量(TxBxCxHxW)

2. 访问元素

切片规则:[start : end : step]

start : 起始索引,从0开始,-1表示结束。
end:结束索引,不包含。
step:步长,即范围内每次取值的间隔;步长为正时,从左向右取值。步长为负时,反向取值。

(1)访问一个元素

[1, 2]

>>> x = torch.arange(1, 17).reshape(4, 4)
>>> x[1, 2]
tensor(7)

(2)访问一行

[1,:]

>>> x[1,:]
tensor([5, 6, 7, 8])

(3)访问一列

 [:,1]

>>> x[:,1]
tensor([ 2,  6, 10, 14])

(4)子区域

[1:3,1:]

>>> x[1:3,1:]
tensor([[ 6,  7,  8],[10, 11, 12]])

[::3,::2]

>>> x[::3,::2]
tensor([[ 1,  3],[13, 15]])

3. 基础函数

(1) 创建一个行向量

x = torch.arange(12)
x  #tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

(2)通过张量的shape属性来访问张量的形状和元素总数

x.shape # torch.Size([12])
x.size() # torch.Size([12])

(3)reshape()函数

改变一个张量的形状 。

X = x.reshape(3,4)
X
# tensor([[ 0,  1,  2,  3],
#         [ 4,  5,  6,  7],
#         [ 8,  9, 10, 11]])

(4)创建全0、全1、其他常量或从特定分布中随机采样的数字组成的张量

全0: 第一个参数为张量的shape。

torch.zeros((2,3,4))
# tensor([[[0., 0., 0., 0.],
#          [0., 0., 0., 0.],
#          [0., 0., 0., 0.]],#         [[0., 0., 0., 0.],
#          [0., 0., 0., 0.],
#          [0., 0., 0., 0.]]])

全1

torch.ones((1,3,4))
# tensor([[[1., 1., 1., 1.],
#          [1., 1., 1., 1.],
#          [1., 1., 1., 1.]]])

其他常量(指定值)

torch.tensor([[1,2],[2,1]])
# tensor([[1, 2],
#         [2, 1]])

(5)标准运算(张量间的标准运算,都是按元素运算)

x = torch.tensor([1.0, 2, 3, 4])
y = torch.tensor([5, 6, 7, 8])
x+y,x-y,x*y,x/y,x**y 
# (tensor([ 6.,  8., 10., 12.]), tensor([-4., -4., -4., -4.]), tensor([ 5., 12., 21., 32.]), tensor([0.2000, 0.3333, 0.4286, 0.5000]), tensor([1.0000e+00, 6.4000e+01, 2.1870e+03, 6.5536e+04]))

比较运算符,按位比较

x == y
# tensor([False, False, False, False])

 * 按位相乘,称为哈达玛乘(数学符号\odot)。

>>> A = torch.arange(9).reshape(3,3)
>>> A
tensor([[0, 1, 2],[3, 4, 5],[6, 7, 8]])
>>> B = torch.arange(9,18).reshape(3,3)
>>> B
tensor([[ 9, 10, 11],[12, 13, 14],[15, 16, 17]])
>>> A * B
tensor([[  0,  10,  22],[ 36,  52,  70],[ 90, 112, 136]])

(6)拼接函数cat

torch.cat(inputs, dim=?)

  • inputs : 待连接的张量序列,可以是任意相同Tensor类型的python 序列
  • dim : 选择的扩维, 必须在0len(inputs[0])之间,沿着此维连接张量序列。

dim=0,表示按第0维方向拼接,即按行方向拼接;dim=1,表示按第0维方向拼接,即按列方向拼接;dim=3…… 

y = torch.tensor(([[4, 1],[3, 5]]))
x = torch.arange(4, dtype=torch.float32).reshape(2, 2)
torch.cat((x, y), dim=0)
# tensor([[0., 1.],
#         [2., 3.],
#         [4., 1.],
#         [3., 5.]])torch.cat((x, y), dim=1)
# tensor([[0., 1., 4., 1.],
#         [2., 3., 3., 5.]])

(7)求和函数sum

参数1,axis:指定求和维度,张量按该维度求和,并将该维度消去。

如,张量形状为[2, 5, 4],axis=0时,求和后,张量形状为[5, 4]。

参数2,keepdims:默认为False,是否保留axis要消去的维度。keepdims=True时,将要消去的维度长度置为1。

如,张量形状为[2, 5, 4],axis=0,keepdims=True时,求和后,张量形状为[1,5, 4]。

1)张量中的所有元素求和:

x = torch.tensor([1.0, 2, 3, 4])
x.sum()
# tensor(10.)

2)按行(第0维)求和:

>>> A = torch.arange(9).reshape(3,3)
>>> A
tensor([[0, 1, 2],[3, 4, 5],[6, 7, 8]])>>> A.sum(axis=0)
tensor([ 9, 12, 15])

3)按列(第1维)求和: 

>>> A.sum(axis=1)
tensor([ 3, 12, 21])

2维求和,3维……

4)keepdims(保留维度)

按某一维度求和时,保留该维度,该维度长度置为1。

>>> A
tensor([[0, 1, 2],[3, 4, 5],[6, 7, 8]])>>> A.sum(axis=1).size()
torch.Size([3])>>> A.sum(axis=1,keepdims=True).size()
torch.Size([3, 1])>>> A.sum(axis=1,keepdims=True)
tensor([[ 3],[12],[21]])
# 按列求均值
>>> A/A.sum(axis=1,keepdims=True)
tensor([[0.0000, 0.3333, 0.6667],[0.2500, 0.3333, 0.4167],[0.2857, 0.3333, 0.3810]])

5)指定多维度求和

A.sum(axis=[n, m]),按n和m维度求和,求和结果中其他维度不变,将n,m维度消去。

>>> A = torch.arange(8).reshape(2,2,2)
>>> A
tensor([[[0, 1],[2, 3]],[[4, 5],[6, 7]]])# 保留第1维度
>>> A.sum(axis=[0,2]).size()
torch.Size([2])# 使用keepdims保留要消去的维度,将维度长度置为1
>>> A.sum(axis=[0,2],keepdims=True).size()
torch.Size([1, 2, 1])# 输出
>>> A.sum(axis=[0,2])
tensor([10, 18])

(8)矩阵的转置

>>> import torch
>>> B = torch.tensor(([1,2,3],[4,5,6],[7,8,9]))
>>> B
tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
>>> B.T
tensor([[1, 4, 7],[2, 5, 8],[3, 6, 9]])

(9)复制张量

“=”,复制之后的两个张量共用一个内存地址。

>>> A = B
>>> id(B)
1950198475976
>>> id(A)
1950198475976
>>> B[0]=10
>>> B
tensor([10,  2,  3,  4,  5,  6,  7,  8,  9])
>>> A
tensor([10,  2,  3,  4,  5,  6,  7,  8,  9])

clone(),重新分配内存地址。

>>> A=B.clone()
>>> id(A)
1950198519512
>>> id(B)
1950198475976

(10)点积,矩阵-向量积和矩阵乘法

向量点积—dot函数(1维):

>>> A = torch.arange(4)
>>> A
tensor([0, 1, 2, 3])
>>> B
tensor([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])
>>> B = torch.arange(4, 8)
>>> B
tensor([4, 5, 6, 7])
>>> torch.dot(A, B)
tensor(38)

矩阵点积2维):

按位相乘求和。

>>> A = torch.arange(9).reshape(3,3)
>>> B = torch.arange(9,18).reshape(3,3)>>> torch.sum(A * B)
tensor(528)

矩阵-向量积(mv函数)

>>> B = torch.arange(9,18).reshape(3,3)
>>> C = torch.arange(3)>>> torch.mv(B, C)
tensor([32, 41, 50])

矩阵乘法(mm函数)

>>> torch.mm(A, B)
tensor([[ 42,  45,  48],[150, 162, 174],[258, 279, 300]])

(11)范数

L1范数:

向量元素的绝对值之和。

>>> u = torch.tensor([3.0, -4.0])
>>> torch.abs(u).sum()
tensor(7.)

L2范数:

向量元素平方和的平方根。

>>> u = torch.tensor([3.0, -4.0])
>>> torch.norm(u)
tensor(5.)

弗罗贝尼乌斯-范数(F-范数)

矩阵元素的平方和的平方根。

>>> torch.norm(torch.ones(4, 9))
tensor(6.)

4.广播机制

1.通过适当复制元素来扩展一个或两个数组,以便在转换之后,两个张量具有相同的形状。

2.对于生成的数组执行按元素操作。

y = torch.arange(12).reshape(3,2,2)
y
# tensor([[[ 0,  1],
#          [ 2,  3]],
#
#         [[ 4,  5],
#          [ 6,  7]],#         [[ 8,  9],
#          [10, 11]]])x = torch.tensor([[1,2],[3,4]])
x# tensor([[1, 2],
#         [3, 4]])x + y# tensor([[[ 1,  3],
#          [ 3,  5]],#         [[ 5,  7],
#          [ 7,  9]],#         [[ 9, 11],
#          [11, 13]]])

5.转化为Numpy张量

A = x.numpy()
type(A)
# <class 'numpy.ndarray'>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18224.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CorelDraw怎么做立体字效果?CorelDraw制作漂亮的3d立体字教程

1、打开软件CorelDRAW 2019&#xff0c;用文本工具写上我们所需要的大标题。建议字体选用比较粗的适合做标题的字体。 2、给字填充颜色&#xff0c;此时填充的颜色就是以后立体字正面的颜色。我填充了红色&#xff0c;并加上了灰色的描边。 3、选中文本&#xff0c;单击界面左侧…

java 企业工程管理系统软件源码+Spring Cloud + Spring Boot +二次开发+ MybatisPlus + Redis

&#xfeff; Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&am…

Metric3D:Towards Zero-shot Metric 3D Prediction from A Single Image

参考代码&#xff1a;Metric3D 介绍 在如MiDas、LeReS这些文章中对于来源不同的深度数据集使用归一化深度作为学习目标&#xff0c;则在网络学习的过程中就天然失去了对真实深度和物体尺寸的度量能力。而这篇文章比较明确地指出了影响深度估计尺度变化大的因素就是焦距 f f f…

TypeC拓展设计方案|TypeC转HDMI设计方案|CS5261/CS5265芯片设计参数对比

集睿智远CS5261/CS5265都可以用于设计TypeC转HDMI方案&#xff0c;低成本TypeC扩展坞设计方案&#xff0c;而两者也有些差异&#xff1a;1.CS5261支持DP1.4输入&#xff0c;一个HDMI1.4输出&#xff0c;即HDMI输出为4K30HZ ;CS5265DP1.4到HDMI2.0转换芯片&#xff0c;即HDMI输出…

ansible安装lnmp(集中式)

文章目录 一、安装nginx二、安装mysql三、安装php测试&#xff1a; 一、安装nginx - name: the nginx playhosts: webserversremote_user: roottasks:- name: stop firewalld #关闭防火墙service: namefirewalld statestopped enabledno- name: selinux stopc…

Python元编程-装饰器介绍、使用

目录 一、Python元编程装饰器介绍 二、装饰器使用 1. 实现认证和授权功能 2.实现缓存功能 3.实现日志输出功能 三、附录 1. logging.basicConfig介绍 2. 精确到毫秒&#xff0c;打印时间 方法一&#xff1a;使用datetime 方法二&#xff1a;使用time 一、Python元编程…

C# 根据图片的EXIF自动调整图片方向

PropertyItems 代码 /// <summary>/// 根据图片exif调整方向/// </summary>/// <param name"img"></param>public void RotateImage(Bitmap img){var exif img.PropertyItems;byte orien 0;var item exif.Where(m > m.Id 274).ToArra…

关于综合能源智慧管理系统的架构及模式规划的研究

安科瑞 华楠 摘 要&#xff1a;探讨了国内外能源互联网的研究发展&#xff0c;分析了有关综合智慧能源管理系统的定位&#xff0c;以及系统的主要特点&#xff0c;研究了综合智慧能源管理系统的构架以及模式规划。 关键词&#xff1a;综合能源&#xff1b;智慧管理系统&#…

前端开发:基于cypress的自动化实践

如何在vue中使用cypress如何运行cypress如何编写测试用例如何解决测试数据的问题遇到的元素定位的问题如何看待cypresscypress是否为最佳工具测试怎么办&#xff1f; 如何在vue中使用cypress vue提供了vue-cli 可以快速的创建vue项目。 vue create hello-world在选择安装项里…

【李宏毅机器学习·学习笔记】Deep Learning General Guidance

本节课可视为机器学习系列课程的一个前期攻略&#xff0c;这节课主要对Machine Learning 的框架进行了简单的介绍&#xff1b;并以training data上的loss大小为切入点&#xff0c;介绍了几种常见的在模型训练的过程中容易出现的情况。 课程视频&#xff1a; Youtube&#xff1…

Java并发系列之二:悲观锁机制

什么是锁 在并发环境下&#xff0c;会出现多个线程对同一个资源进行争抢的情况&#xff0c;假设A线程对资源正在进行修改&#xff0c;此时B线程此时又对资源进行了修改&#xff0c;这就可能会导致数据不一致的问题。为了解决这个问题&#xff0c;很多编程语言引入了锁机制&…

前端学习--vue2--插槽

写在前面&#xff1a; 这个用法是在使用组件和创建组件中 文章目录 介绍简单使用多个插槽省写默认/后备内容作用域插槽常用实例Element-ui的el-table 废弃用法slot attributeslot-scope attribute 介绍 我们在定义一些组件的时候&#xff0c;由于组件内文字想要自定义&#…

ssh安全远程管理

目录 1、什么是ssh 2、ssh登陆 3、ssh文件传输 1、什么是ssh ssh是 Secure Shell 的缩写&#xff0c;是一个建立在应用层上的安全远程管理协议。ssh 是目前较为可靠的传输协议&#xff0c;专为远程登录会话和其他网络服务提供安全性。利用ssh 协议可以有效防止远程管理过程中…

机器学习笔记之优化算法(二)线搜索方法(方向角度)

机器学习笔记之优化算法——线搜索方法[方向角度] 引言回顾&#xff1a;线搜索方法从方向角度观察线搜索方法场景构建假设1&#xff1a;目标函数结果的单调性假设2&#xff1a;屏蔽步长 α k \alpha_k αk​对线搜索方法过程的影响假设3&#xff1a;限定向量 P k \mathcal P_k …

0基础学习VR全景平台篇 第76篇:全景相机-圆周率全景相机如何直播推流

圆周率科技&#xff0c;成立于2012年&#xff0c;是中国最早投身嵌入式全景算法研发的团队之一&#xff0c;亦是全球市场占有率最大的全景算法供应商。相继推出一体化智能屏、支持一键高清全景直播的智慧全景相机--Pilot Era和Pilot One&#xff0c;为用户带来实时畅享8K的高清…

PyTorch代码实战入门

人这辈子千万不要马虎两件事 一是找对爱人、二是选对事业 因为太阳升起时要投身事业 太阳落山时要与爱人相拥 一、准备数据集 蚂蚁蜜蜂数据集 蚂蚁蜜蜂的图片&#xff0c;文件名就是数据的label 二、使用Dataset加载数据 打开pycharm&#xff0c;选择Anaconda创建的pytorch环…

《工具箱-VNCServer》配置VNCServer,使用VNCViewer实现局域网内页面共享

VNCServer设置 通过VNCServer配置&#xff0c;与VNCviewer配套使用 1.下载并安装VNCServer 2.邮箱密码注册后用户登录 3.设置VNC密码 4.设置viewer不能控制本机 5.打开VNClicensewiz&#xff0c;选择“Enter a license key …” BQ24G-PDXE4-KKKRS-WBHZE-F5RCA BQ24G-PDXE4-…

Java中集合容器详解:简单使用与案例分析

目录 一、概览 1.1 Collection 1. Set 2. List 3. Queue 1.2 Map 二、容器中的设计模式 迭代器模式 适配器模式 三、源码分析 ArrayList 1. 概览 2. 扩容 3. 删除元素 4. 序列化 5. Fail-Fast Vector 1. 同步 2. 扩容 3. 与 ArrayList 的比较 4. 替代方案…

服务器介绍

本文章转载与b战up主谈三国圈&#xff0c;仅用于学习讨论&#xff0c;如有侵权&#xff0c;请联系博主 机架型服务器 堆出同时服务百万人次机组 刀型服务器 服务器炸了 比如用户访问量暴增 超过机组的峰值处理能力&#xff0c;进而导致卡顿或炸服&#xff0c; 适合企业的塔式…

同样是跨端框架,React会不会被VUE取代?

看到知乎上有比较多的类似问题&#xff0c;正好这两个框架在以往的一些项目中都有实践过&#xff0c;就借着本篇文章说说我个人的看法。 先摆个结论&#xff1a;不会&#xff0c;毕竟各有千秋&#xff0c;除非跨端框架有被更好的概念所替代&#xff0c;又或者App已经彻底过气了…