C#-串口通信入门及进阶扩展

目录

一、串口相关参数介绍

1、端口(COM口)

2、波特率(Baud rate)

3、起始位

4、停止位(StopBits)

5、数据位

6、校验位

7、缓存区

二、串口通信助手

三、虚拟串口工具

四、进阶扩展 

1、位运算

2、负数、浮点数存储方式 

3、数据校验算法

3.1、奇偶校验

3.2、LRC

3.3、累加和校验

3.4、CRC

介绍 

常用多项式表

CRC-8

CRC-16

CRC-32

CRC-USB

4、Modbus通信协议

4.1、介绍 

4.2、Modbus-RTU


串口通讯(Serial Communication),是指外设和计算机间,通过数据信号线、地线等,按位进行传输数据的一种双向通讯方式。

串口是一种接口标准,它规定了接口的电气标准,没有规定接口插件电缆以及使用的通信协议,通信协议很多,可根据实际情况选择和自定义。

一、串口相关参数介绍

1、端口(COM口)

CMO口(Communication Module Outlet)是一种用于连接计算机和外部设备的接口,也称为串行端口,简称CMO口,常见串口通讯有一般电脑应用的RS-232(使用 25 针或 9 针连接器)和工业电脑应用的半双工RS-485与全双工RS-422。

电脑端口查看:设置->系统->关于->设备管理器->端口

2、波特率(Baud rate)

波特率是一个电子信号上的术语,用于描述信道的数据传输速度。

单位是bit/s,常见的9600波特率表示每秒传输9600个比特位,1个字节8位,9600/8=1200,代表每秒钟串口可传输1200个字节(不考虑起始位、停止位、校验位的情况下),注意:

  1. 波特率如果太高会导致传输数据不稳定,一般使用9600;
  2.  发送端与接收端波特率不一致会导致数据不一致;

3、起始位

起始位必须是持续一个比特时间的逻辑0电平,标志传输一个字符的开始,接收方可用起始位使自己的接收时钟与发送方的数据同步;

C#开发中一般不需要设置起始位。

4、停止位(StopBits)

停止位可以是是1位、1.5位或2位,可以由软件设定,它一定是逻辑1电平,标志着传输一个字符的结束;

C#开发中一般通过StopBits枚举类型设置停止位,枚举值包括None、One、Two、OnePointFive四种(通常若设备不指定,默认停止位为1位)。

5、数据位

数据位紧跟在起始位之后,是通信中的真正有效信息。数据位的位数可以由通信双方共同约定,一般可以是5位、7位或8位;

C#开发中若设备不指定,默认数据位为8位

6、校验位

校验位仅占一位,用于进行奇校验或偶校验,检验位不是必须有的。如果是奇校验,需要保证传输的数据总共有奇数个逻辑高位;如果是偶校验,需要保证传输的数据总共有偶数个逻辑高位;

C#开发中通常使用Parity枚举类型来设置校验位,有五种,日常开发中使用最多的是None无校验、Odd奇校验、Even偶校验。

7、缓存区

串口包括两个缓存区,发送缓存区和接收缓存区;

发送缓存区:(软件)发送数据时将数据先存在发送缓存区,再通过(硬件)串口发送出去;

接收缓存区:接收数据时先将数据存在接收缓存区,(软件)再从中读取数据;

二、串口通信助手

串口通信助手是用于测试和调试串口通信的工具,可通过串口与外部设备通信,提供界面来监视和控制串口数据的接收和发送,从而验证串口通信是否正常工作。

实现一个串口通信助手示例:C#Wpf-实现串口通信助手

分享一个串口通信助手,下载地址:友善串口通信助手

                                        提取码: h64y

三、虚拟串口工具

当电脑无COM口时,使用该工具虚拟出COM口。 

下载地址:VSPD

提取码:a2cp

破解说明:运行vspd.exe 安装,安装后先不运行,将 vspdctl.dll 文件放入工程目录中,覆盖原文件,即完成破解。

使用说明:点击Add Pair按钮添加虚拟COM口连接对,即可。

四、进阶扩展 

1、位运算

符号意义逻辑介绍示例
~逻辑非取反~a
&逻辑与清0a&b
|逻辑或置1a|b
<<按位左移,超出舍掉乘以2的n次方a<<n
>>按位右移,超出舍掉除以2的n次方a>>n
^异或不同置1,相同清0a^b

  三次异或,可使变量值互换,示例如下:

int a = 13;
int b = 20;
a ^= b;
b ^= a;
a ^= b;
Console.WriteLine($"a:{a}b:{b}");

2、负数、浮点数存储方式 

负数在计算机中是以补码的形式存储,补码计算方式:

  1. 最高位为符号位,负数符号位为1,正数为0;
  2. 除符号位,所有位取反得到反码;
  3. 反码+1得到补码;

浮点数一般分为单精度与双精度两种,在计算机中的存储方式通常分为三部分:

  1. 符号位:正数为0,负数为1;
  2. 指数位:用于存储科学计数法中的指数部分;
  3. 小数位:用于表示小数部分,不足补0

单精度float格式:

符号位指数位小数位
1bit8bits23bits

双精度double格式:

符号位指数位小数位
1bit11bits52bits

float示例:

8.25转化为二进制表示为:整数部分除2取余,小数部分乘2取整,得到1000.01

科学计数法表示为1.00001*2的3次方,指数为3(指数范围为-126-127),为消除负数影响,得到的指数+127,得130,即指数1000 0010,小数:00001,存储格式如下: 

符号位指数位小数位
01000 0010000 0100 0000 0000 0000 0000

3、数据校验算法

由于数据传输距离的因素影响,计算机和受控设备间的通信数据常常出现不可预知的错误,为了避免错误带来的影响,通常会在通信时对数据进行校验。

3.1、奇偶校验

每8位加一个奇偶校验位,

奇校验:若数据位中1的数量为偶数,则校验位置1凑齐奇数个1,反之置0;

偶校验:若数据为中1的数量为奇数,则校验位置1凑齐偶数个1,反之置0;

缺点:减慢传输速率,偶数个错误时检测不出(出错率五五开);

3.2、LRC

纵向冗余校验(Longitudinal Redundancy Check,LRC),又称逐字节奇偶校验,将数据依字节为单位纵向排列,所有字节相同位全部异或(奇数个1为1,反之为0),计算出一个字节的结果。

缺点:纵向偶数个错误时检测不出;

3.3、累加和校验

将数据的每个字节的值相加,其结果减去255的倍数(控制在0-255区间),然后放在数据最后,接收方接收数据后累加和后与校验值比对;

单个字符出错率1/256

3.4、CRC
介绍 

CRC,循环冗余校验,使用的算法思想为除法,将余数作为校验值放在数据末尾;

模二除法(二进制的除法),CRC实际就是模二除法的升级版,通过借位(位移),将余数补在原数据末尾,以此来消掉余数。(接收端将修改后的数据与生成项模二相除没有余数即代表数据无误)

CRC除数叫生成多项式,又称生成项,不同的生成项有不同的CRC,如:CRC8、CRC16、CRC-USB、CRC32……。(二进制转多项式:数字中多少位1代表的是x的多少次方)

模二除法举例: 

模二借位举例:

常用多项式表

CRC-8

CRC-8,8位校验码,适用于对数据简单校验的场景,常见的应用领域包括遥控器、智能家居等,示例如下:

    public static byte CalcCrc8(byte[] data){byte crc = 0x00;byte polynomial = 0x8C; // CRC-8 多项式foreach (byte b in data){crc ^= b;for (int i = 0; i < 8; i++){if ((crc & 0x80) != 0){crc = (byte)((crc << 1) ^ polynomial);}else{crc <<= 1;}}}return crc;}
CRC-16

CRC-16,16位校验码,适用于中等程度校验场景,常见的应用领域包括Modbus通信协议、SD卡存储等,示例如下:

    public static ushort CalcCrc16(byte[] data){ushort crc = 0xFFFF;ushort polynomial = 0xA001; // CRC-16 多项式foreach (byte b in data){crc ^= (ushort)(b << 8);for (int i = 0; i < 8; i++){if ((crc & 0x01) == 0x01){crc >>= 1;crc ^= polynomial;}else{crc >>= 1;}}}return crc;}
CRC-32

CRC-32,32位校验码,适用于对数据需高强度校验的场景,常见的应用领域包括网络通信、文件传输、数据库存储等,示例如下:

    public static uint CalcCrc32(byte[] data){uint crc = 0xFFFFFFFF;uint polynomial = 0xEDB88320; // CRC-32 多项式foreach (byte b in data){crc ^= b;for (int i = 0; i < 8; i++){if ((crc & 0x00000001) != 0){crc = (crc >> 1) ^ polynomial;}else{crc >>= 1;}}}return ~crc;}
CRC-USB

CRC-USB,CRC特殊算法之一,适用于USB接口,例如USB 1.1、USB 2.0等协议中的数据校验,示例如下: 

    public static uint CalcCrcUsb(byte[] data){uint crc = 0xFFFFFFFF;uint polynomial = 0x04C11DB7; // USB 多项式foreach (byte b in data){crc ^= (uint)(b << 24);for (int i = 0; i < 8; i++){if ((crc & 0x80000000) != 0){crc = (crc << 1) ^ polynomial;}else{crc <<= 1;}}}return ~crc;}

4、Modbus通信协议

4.1、介绍 

Modbus,串行通信协议,属于OSI七层模型中的应用层,最初设计用于可编程逻辑控制器(PLC),Modbus是一种开放式协议,物理层支持使用RS232/RS485/RS422协议的串行设备,同时还支持调制解调器;

Modbus通过设备之间的串行线进行数据传输最简单的设置是使用一根串行电缆连接两个设备(主设备和从设备)上的串行端口;

Modbus遵循主从模式通信,实现主站与一个(单播)或多个(广播)从站交换报文数据,通信由主机发起,一问一答式,从设备无法主动向主机发送数据。

常用类别有Modbus-RTU、Modbus-ASCII、Modbus-TCP,这里主要介绍Modbus-RTU;

4.2、Modbus-RTU

报文格式:

地址码功能码数据CRC-16
1字节1字节n字节2字节

地址码:0为主机广播地址,1-247为从机地址,248-255保留;

功能码:常用功能码如下表:

代码

名称

作用

01

读取线圈状态

取得一组逻辑线圈的当前状态(ON/OFF)

02

读取输入状态

取得一组开关输入的当前状态(ON/OFF)

03

读取保持寄存器

在一个或多个保持寄存器中取得当前的二进制值

04

读取输入寄存器

在一个或多个输入寄存器中取得当前的二进制值

05

强置(写)单线圈

强置一个逻辑线圈的通断状态

06

预置(写)单寄存器

放置一个特定的二进制值到一个单寄存器中

07

读取异常状态

取得8个内部线圈的通断状态

15

强置(写)多线圈

强置一串连续逻辑线圈的通断

16

预置(写)多寄存器

放置一系列特定的二进制值到一系列多寄存器中

17

报告从机标识

可使主机判断编址从机的类型及该从机运行指示灯的状态

数据:通常包括起始地址、数据长度或数据,都为大端模式(低位存于高地址);

CRC校验:通常使用16位校验码,采用小端模式(低位存于低地址);

Modbus-Rtu报文封装示例(仅供参考)

        /// <summary>/// MODEBUS_RTU通信数据/// </summary>/// <param name="devadress">地址码</param>/// <param name="funccode">功能码</param>/// <param name="paraadress">读/写参数代号地址(起始地址)</param>/// <param name="value">读取数据长度或写数据值</param>/// <returns></returns>public static List<byte> GetModbusData(byte devadress, byte funccode, int paraadress, int value){List<byte> data = new List<byte>(){devadress,funccode,};var high = (paraadress & 0xFF00) >> 8;//高8位var low = paraadress & 0xFF;//低8位data.Add(Convert.ToByte(high));data.Add(Convert.ToByte(low));high = (value & 0xFF00) >> 8;low = value & 0xFF;data.Add(Convert.ToByte(high));data.Add(Convert.ToByte(low));var res = Crc16.CRC16(data.ToArray());//16位校验high = (res & 0xFF00) >> 8;low = res & 0xFF;data.Add(Convert.ToByte(low));data.Add(Convert.ToByte(high));return data;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/181896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

InnoDB存储引擎中的锁

文章目录 概要一、需要解决的问题二、共享锁和独占锁1.1 锁定读1.2 表级别的共享锁、独占锁 三、行锁3.1 数据准备3.2 几种常见的行级锁3.3 行锁升级为表锁 概要 关于MySQL涉及到的锁&#xff0c;大致可以总结如下&#xff1a; MyISAM存储引擎在开发过程中几乎很少使用了&…

SpringSecurity+JWT实现权限控制以及安全认证

一.简介 Spring Security 是 Spring家族中的一个安全管理框架。相比与另外一个安全框架Shiro&#xff0c;它提供了更丰富的功能&#xff0c;社区资源也比Shiro丰富。 认证&#xff1a;验证当前访问系统的是不是本系统的用户&#xff0c;并且要确认具体是哪个用户​ 授权&…

Spring Boot + MyBatis-Plus实现数据库读写分离

文章目录 1. 引言2. MyBatis-Plus简介3. 准备工作4. 配置数据源5. 配置MyBatis-Plus6. 创建实体类和Mapper接口7. 编写Service8. 控制器层9. 测试10. 数据库读写分离的原理11. 拓展11.1. 动态数据源11.2. 多数据源事务管理11.3. 多租户支持 12. 总结 &#x1f389;Spring Boot …

【多线程】-- 06 线程状态之线程停止与休眠

多线程 5 线程状态 线程的五大状态&#xff1a;创建状态、就绪状态、阻塞状态、运行状态、死亡状态。如下图所示&#xff1a; 具体解释如下&#xff1a; 线程方法&#xff1a; 5.1 停止线程 不推荐使用JDK提供的stop()方法、destroy()方法【已废弃 – deprecated】推荐线程自…

NX二次开发UF_CSYS_create_csys 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CSYS_create_csys Defined in: uf_csys.h int UF_CSYS_create_csys(const double csys_origin [ 3 ] , tag_t matrix_id, tag_t * csys_id ) overview 概述 Creates a CSYS. 创…

京东API接口的接入(京东工业)

在技术交流群&#xff0c;大家有探讨稳定获取京东商品主图、价格、标题&#xff0c;及sku的完整解决方案。这个引起了我技术挑战的兴趣。 目前&#xff0c;自己做了压测&#xff0c;QPS高、出滑块概率极低&#xff0c;API整体稳定&#xff0c;可满足业务场景的性能需求。 公共…

Appium PO模式UI自动化测试框架——设计与实践

1. 目的 相信做过测试的同学都听说过自动化测试&#xff0c;而UI自动化无论何时对测试来说都是比较吸引人的存在。相较于接口自动化来说&#xff0c;它可以最大程度的模拟真实用户的日常操作与特定业务场景的模拟&#xff0c;那么存在即合理&#xff0c;自动化UI测试自然也是广…

面试题:海量PDF的OCR处理思路

关键点&#xff1a; 1000wPDF&#xff1a;数据量非常大。3天处理完&#xff1a;有时间限制。一篇PDF1~10s&#xff1a;可能需要以最高10s去做计算&#xff0c;这样时间才能保证留有富余。要求资源最大化利用&#xff1a;也就是尽可能节省服务器资源&#xff0c;能复用尽量复用&…

【EI会议征稿】第四届应用数学、建模与智能计算国际学术会议(CAMMIC 2024)

第四届应用数学、建模与智能计算国际学术会议&#xff08;CAMMIC 2024&#xff09; 2024 4th International Conference on Applied Mathematics, Modelling and Intelligent Computing 第四届应用数学、建模与智能计算国际学术会议&#xff08;CAMMIC 2024&#xff09;将于…

JOSEF约瑟 逆功率继电器 GG-21 5a 100v 50hz

系列型号 GG-21逆功率继电器 GG-22过载继电器 1 用途 逆功率继电器GG-21/5A/100V 在出现逆功率时&#xff0c;从电网中断开交流发电机。 2 概述 逆功率继电器是基于感应式原理(具有旋转磁场)而工作。 继电器导磁体由两个磁路系统组成&#xff1a;上磁路系统和下磁路系统…

【带头学C++】----- 八、C++面向对象编程 ---- 8.10 函数的默认参数

8.10 函数的默认参数 C在声明函数原型的时可为一个或者多个参数指定默认(缺省)的参数值&#xff0c;当函数调用的时候如果没有指定这个值&#xff0c;编器会自动用默认值代替。 通过为函数参数指定默认值&#xff0c;可以在调用函数时省略相应的参数&#xff0c;而该参数将使用…

陶陶摘苹果、跳跃游戏

1. 陶陶摘苹果 题目描述&#xff1a; 陶陶家的院子里有一棵苹果树&#xff0c;每到秋天树上就会结出 10 个苹果。苹果成熟的时候&#xff0c;陶陶就会跑去摘苹果。陶陶有个 30 厘米高的板凳&#xff0c;当她不能直接用手摘到苹果的时候&#xff0c;就会踩到板凳上再试试。 现在…

【MySQL源码】使用CLion 远程调试MySQL源码

目录 0 准备工作 1 IDE 2 下载MySQL源码 ​编辑 一 配置CLion 1 添加远程服务器 2 配置远程服务器环境 3 升级gdb版本 4 升级CMake版本 5 修改远程服务器文件上传的目录的对应关系 5 配置cmake 7 初始化MySQL 8 启动MySQL 作为DBA工作多年&#xff0c;如果还是停…

48个代码大模型汇总,涵盖原始、改进、专用、微调4大类

代码大模型具有强大的表达能力和复杂性&#xff0c;可以处理各种自然语言任务&#xff0c;包括文本分类、问答、对话等。这些模型通常基于深度学习架构&#xff0c;如Transformer&#xff0c;并使用预训练目标&#xff08;如语言建模&#xff09;进行训练。 在对大量代码数据的…

Leetcode(面试题 08.01.)三步问题

文章目录 前言一、题目分析二、算法原理1.状态表示2.状态转移方程3.初始化4.填表顺序5.返回值是什么 三、代码实现总结 前言 在本文章中&#xff0c;我们将要详细介绍一下Leetcode(面试题 08.01.)三步问题相关的内容 一、题目分析 1.小孩可以上一阶&#xff0c;两阶&#xff…

Shell脚本编程案例 – 批量创建特殊要求账户

Shell脚本编程案例 – 批量创建特殊要求账户 Shell Scripting Cases – Create a Bunch of accounts with special requests By JacksonML 本文简要介绍批量执行Shell脚本命令的基本思路&#xff0c;以检验shell脚本知识掌握情况。希望对读者有所帮助。 案例要求&#xff1a…

GO 集成Prometheus

一、Prometheus介绍 Prometheus&#xff08;普罗米修斯&#xff09;是一套开源的监控&报警&时间序列数据库的组合&#xff0c;起始是由SoundCloud公司开发的。随着发展&#xff0c;越来越多公司和组织接受采用Prometheus&#xff0c;社会也十分活跃&#xff0c;他们便…

初刷leetcode题目(10)——数据结构与算法

&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️Take your time ! &#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️…

PyQt6 QLCDNumber液晶数字显示控件

​锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计29条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话…

(Spring学习06)Spring之循环依赖底层源码解析

什么是循环依赖&#xff1f; 很简单&#xff0c;就是A对象依赖了B对象&#xff0c;B对象依赖了A对象。 比如&#xff1a; // A依赖了B class A{public B b; }// B依赖了A class B{public A a; }那么循环依赖是个问题吗&#xff1f; 如果不考虑Spring&#xff0c;循环依赖并不…