数据结构与算法之美学习笔记:27 | 递归树:如何借助树来求解递归算法的时间复杂度?

目录

  • 前言
  • 递归树与时间复杂度分析
  • 实战一:分析快速排序的时间复杂度
  • 实战二:分析斐波那契数列的时间复杂度
  • 实战三:分析全排列的时间复杂度
  • 内容小结

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述
今天,我们来讲这种数据结构的一种特殊应用,递归树。
我们都知道,递归代码的时间复杂度分析起来很麻烦。除了用递推公式这种比较复杂的分析方法,有没有更简单的方法呢?今天,我们就来学习另外一种方法,借助递归树来分析递归算法的时间复杂度。

递归树与时间复杂度分析

递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。
如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作递归树。我这里画了一棵斐波那契数列的递归树,你可以看看。节点里的数字表示数据的规模,一个节点的求解可以分解为左右子节点两个问题的求解。
在这里插入图片描述
在,我们就来看,如何用递归树来求解时间复杂度。现在我们就借助归并排序来看看,如何用递归树,来分析递归代码的时间复杂度。
在这里插入图片描述
因为每次分解都是一分为二,我们把时间上的消耗记作常量 1。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作 n。

现在,我们只需要知道这棵树的高度 h,用高度 h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n∗h)。

归并排序的原理和递归树,可以看出来,归并排序递归树是一棵满二叉树。我们前两节中讲到,满二叉树的高度大约是 log2​n,所以,归并排序递归实现的时间复杂度就是 O(nlogn)。

利用递归树的时间复杂度分析方法并不难理解,关键还是在实战,所以,接下来我会通过三个实际的递归算法,带你实战一下递归的复杂度分析。学完这节课之后,你应该能真正掌握递归代码的复杂度分析。

实战一:分析快速排序的时间复杂度

快速排序在最好情况下,每次分区都能一分为二,这个时候用递推公式 T(n)=2T(2n​)+n,很容易就能推导出时间复杂度是 O(nlogn)。
我们假设平均情况下,每次分区之后,两个分区的大小比例为 1:k。当 k=9 时,如果用递推公式的方法来求解时间复杂度的话,递推公式就写成 :
在这里插入图片描述
那我们来看看,用递归树来分析快速排序的平均情况时间复杂度,是不是比较简单呢?
在这里插入图片描述
快速排序的过程中,每次分区都要遍历待分区区间的所有数据,所以,每一层分区操作所遍历的数据的个数之和就是 n。我们现在只要求出递归树的高度 h,这个快排过程遍历的数据个数就是 h∗n ,也就是说,时间复杂度就是 O(h∗n)。
因为每次分区并不是均匀地一分为二,所以递归树并不是满二叉树。这样一个递归树的高度是多少呢?
我们知道,快速排序结束的条件就是待排序的小区间,大小为 1,也就是说叶子节点里的数据规模是 1。从根节点 n 到叶子节点 1,递归树中最短的一个路径每次都乘以 1/10,最长的一个路径每次都乘以 9/10。
通过计算,我们可以得到,从根节点到叶子节点的最短路径是 log ⁡ 10 n \log_{10} n log10n,最长的路径是 log ⁡ 10 / 9 n \log_{10/9} n log10/9n
在这里插入图片描述
在这里插入图片描述

实战二:分析斐波那契数列的时间复杂度

int f(int n) {if (n == 1) return 1;if (n == 2) return 2;return f(n-1) + f(n-2);
}

我们先把上面的递归代码画成递归树,就是下面这个样子:
在这里插入图片描述
这棵递归树的高度是多少呢?
在这里插入图片描述
如果路径长度都为 n,那这个总和就是 2 n − 1 2^n−1 2n1
如果路径长度都是 n​ /2,那整个算法的总的时间消耗就是 2 n / 2 − 1 2^{n/2}−1 2n/21

实战三:分析全排列的时间复杂度

“如何把 n 个数据的所有排列都找出来”,这就是全排列的问题。我来举个例子。比如,1,2,3 这样 3 个数据,有下面这几种不同的排列:

1, 2, 3
1, 3, 2
2, 1, 3
2, 3, 1
3, 1, 2
3, 2, 1

如何编程打印一组数据的所有排列呢?这里就可以用递归来实现。如果我们确定了最后一位数据,那就变成了求解剩下 n−1 个数据的排列问题。而最后一位数据可以是 n 个数据中的任意一个,因此它的取值就有 n 种情况。所以,“n 个数据的排列”问题,就可以分解成 n 个“n−1 个数据的排列”的子问题。
递推公式:

假设数组中存储的是123...n。f(1,2,...n) = {最后一位是1, f(n-1)} + {最后一位是2, f(n-1)} +...+{最后一位是n, f(n-1)}

如果我们把递推公式改写成代码,就是下面这个样子:

// 调用方式:
// int[]a = a={1, 2, 3, 4}; printPermutations(a, 4, 4);
// k表示要处理的子数组的数据个数
public void printPermutations(int[] data, int n, int k) {if (k == 1) {for (int i = 0; i < n; ++i) {System.out.print(data[i] + " ");}System.out.println();}for (int i = 0; i < k; ++i) {int tmp = data[i];data[i] = data[k-1];data[k-1] = tmp;printPermutations(data, n, k - 1);tmp = data[i];data[i] = data[k-1];data[k-1] = tmp;}
}

现在,我们来看下,如何借助递归树,轻松分析出这个代码的时间复杂度。首先,我们还是画出递归树。不过,现在的递归树已经不是标准的二叉树了。
在这里插入图片描述
第一层分解有 n 次交换操作,第二层有 n 个节点,每个节点分解需要 n−1 次交换,所以第二层总的交换次数是 n∗(n−1)。第三层有 n∗(n−1) 个节点,每个节点分解需要 n−2 次交换,所以第三层总的交换次数是 n∗(n−1)∗(n−2)。以此类推,第 k 层总的交换次数就是 n∗(n−1)∗(n−2)∗…∗(n−k+1)。最后一层的交换次数就是 n∗(n−1)∗(n−2)∗…∗2∗1。每一层的交换次数之和就是总的交换次数。

n + n*(n-1) + n*(n-1)*(n-2) +... + n*(n-1)*(n-2)*...*2*1

这个公式的求和比较复杂,我们看最后一个数,n∗(n−1)∗(n−2)∗…∗2∗1 等于 n!,而前面的 n−1 个数都小于最后一个数,所以,总和肯定小于 n∗n!,也就是说,全排列的递归算法的时间复杂度大于 O(n!),小于 O(n∗n!),虽然我们没法知道非常精确的时间复杂度,但是这样一个范围已经让我们知道,全排列的时间复杂度是非常高的。

内容小结

今天,我们用递归树分析了递归代码的时间复杂度。加上之前的递推公式的时间复杂度分析方法,我们现在已经学习了两种递归代码的时间复杂度分析方法了。
有些代码比较适合用递推公式来分析,比如归并排序的时间复杂度、快速排序的最好情况时间复杂度;有些比较适合采用递归树来分析,比如快速排序的平均时间复杂度。而有些可能两个都不怎么适合使用,比如二叉树的递归前中后序遍历。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/181383.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLO改进系列之SKNet注意力机制

摘要 视皮层神经元的感受野大小受刺激的调节即对于不同的刺激&#xff0c;卷积核的大小应该不同&#xff0c;但在构建CNN时一般在同一层只采用一种卷积核&#xff0c;很少考虑因采用不同卷积核。于是SKNet被提出&#xff0c;在SKNet中&#xff0c;不同大小的感受视野&#xff…

深度学习框架配置

目录 1. 配置cuda环境 1.1. 安装cuda和cudnn 1.1.1. 显卡驱动配置 1.1.2. 下载安装cuda 1.1.3. 下载cudnn&#xff0c;将解压后文件复制到cuda目录下 1.2. 验证是否安装成功 2. 配置conda环境 2.1. 安装anaconda 2.2. conda换源 2.3. 创建conda环境 2.4. pip换源 3.…

【工作记录】spider-flow使用插件连接并操作mongodb数据库

前言 前面说过&#xff0c;spider-flow有着非常优秀的插件机制&#xff0c;可以通过插件实现功能的扩展。前面有小伙伴问到mongodb的集成使用&#xff0c;本文就来梳理下spider-flow中使用mongodb插件的过程&#xff0c;其实非常简单。 PS: spider-flow的作者已经实现了一些常…

飞翔的小鸟小游戏

主类 package APP;import 框架.GameFrame;public class GameApp {public static void main(String[] args) {//游戏的入口new GameFrame();} }场景实物 package 框架;import 图导.Constant; import 图导.GameUtil;import java.awt.*; import java.awt.image.BufferedImage; …

C语言——数字金字塔

实现函数输出n行数字金字塔 #define _CRT_SECURE_NO_WARNINGS 1#include <stdio.h>void pyramid(int n) {int i,j,k;for (i1; i<n; i){//输出左边空格&#xff0c;空格数为n-i for (j1; j<n-i; j){printf(" "); } //每一行左边空格输完后输出数字&#…

STM32g70开启定时器死机原因

在做低功耗产品时&#xff0c;检查发现由于之前开启了BOOTLOADER升级程序&#xff0c;修改了中断向量FALSH起始地址&#xff0c;只在KEIL TARGET IROM1中修改了&#xff0c; 而忘记在程序文件system_stm32f10x.c里修改中断向量表flash起始地址 system_stm32f10x.c里&#xff0…

8款前端特效动画及源码分享

3D立体数字时钟滚动特效 基于Splitting制作的一款3D立体数字时钟滚动特效&#xff0c;创意感满满&#xff0c;可以下载使用。 预览获取 核心代码 <div class"clock"><span class"cog hours tens" data-splitting>0123456789</span>&l…

智能优化算法应用:基于鸡群算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于鸡群算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于鸡群算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.鸡群算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

EZDML基本介绍

一、表结构设计器(EZDML) 这是一个数据库建表的小软件&#xff0c;可快速的进行数据库表结构设计&#xff0c;建立数据模型。类似大家常用的数据库建模工具如PowerDesigner、ERWIN、ER-Studio和Rational-Rose等的超级精简版。 官方下载地址&#xff1a;http://www.ezdml.com/d…

一文教你uni-app开发小程序直播功能,轻松打造专属直播间!

1、微信后台申请插件开通 微信后台 登录微信后台 点击设置中的第三方设置 —> 添加插件 --> 点击小程序直播组件&#xff08;获取AppID&#xff09; 2、微信后台开通直播功能 点击进入直播后台系统 这里就是我们创建的直播功能区域 3、代码中接入直播插件AppID 支持在…

思维导图软件MindNode 5 mac使用场景

MindNode 5 for Mac是一款思维导图软件产品&#xff0c;为用户在灵感启发、思绪整理、记忆协助、项目规划、授课讲演等诸多场景下提升学习和工作效率。通过导图社区和云文件无缝链接用户设备&#xff0c;方便用户随时随地收集灵感和展示文档。 MindNode 5 for Mac应用场景 助力…

【axios】TypeScript实战,结合源码,从0到1教你封装一个axios - 基础封装篇

目录 前言版本环境变量配置引入的类型1、AxiosIntance: axios实例类型2、InternalAxiosRequestConfig: 高版本下AxiosRequestConfig的拓展类型3、AxiosRequestConfig: 请求体配置参数类型4、AxiosError: 错误对象类型5、AxiosResponse: 完整原始响应体类型 目标效果开始封装骨架…

【古月居《ros入门21讲》学习笔记】15_ROS中的坐标系管理系统

目录 说明&#xff1a; 1. 机器人中的坐标变换 tf功能包能干什么&#xff1f; tf坐标变换如何实现 2. 小海龟跟随实验 安装 ros-melodic-turtle-tf 实验命令 运行效果 说明&#xff1a; 1. 本系列学习笔记基于B站&#xff1a;古月居《ROS入门21讲》课程&#xff0c;且使…

KT1404C语音芯片做的板子连接usb到电脑出来空的盘符 怎么处理?

一、问题简介 KT1404C画的板子&#xff0c;连接usb到电脑&#xff0c;出来空的盘符&#xff0c;可以确定KT404C没问题放别的板子OK&#xff0c;就是这个板子不正常&#xff0c;并且芯片5脚的电压输出是3.5v &#xff0c;正常的板子是3.3v&#xff0c;什么问题呢&#xff1f; 问…

数据结构之二叉树与堆以及力扣刷题函数扩展

个人主页&#xff1a;点我进入主页 专栏分类&#xff1a;C语言初阶 C语言程序设计————KTV C语言小游戏 C语言进阶 C语言刷题 数据结构初阶 欢迎大家点赞&#xff0c;评论&#xff0c;收藏。 一起努力 目录 1.前言 2.树 2.1概念 2.2树的相关概念 3.…

Python自动化办公:PDF文件的加密与解密

在本篇文章中&#xff0c;我们将介绍如何使用PyPDF2库对PDF文件进行加密和解密操作。 包括如何给PDF文件添加密码&#xff0c;以及如何从受密码保护的PDF文件中删除密码。 注&#xff1a;删除密码的操作&#xff0c;前提是需要知道密码哦 1. 安装PyPDF2库 首先&#xff0c;…

2023.11.26使用opencv调节图片亮度

2023.11.26使用opencv调节图片亮度 测试一些opencv对图片的处理效果&#xff0c;方法比较简单&#xff0c;找出所有像素点&#xff0c;然后将RGB三色的亮度分别进行调节即可&#xff0c;同类可以进行像素级的处理。测试结果和项目代码如下&#xff1a; 使用OpenCV调节图拍亮…

物理层之码分复用(内含相关例题)

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

数字人透明屏幕的技术原理是什么?

数字人透明屏幕的技术原理主要包括人脸识别和全息影像技术。其中&#xff0c;人脸识别技术是通过摄像头捕捉游客的面部表情和动作&#xff0c;并将其转化为数据指令&#xff0c;以便与数字人物进行互动。而全息影像技术则是利用透明屏幕&#xff0c;通过全息投影的方式将数字人…

基于Java+Vue+uniapp微信小程序商品展示系统设计和实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…