贪心算法策略实现

贪心算法

贪心算法:基于某种情况进行一个排序。 贪心算法得到的是优良解,而非全局最优解。需要证明局部最优解 == 全局最优解

经典贪心算法 —— 会议问题

对于这个问题 ,我们提出贪心策略:

策略1:按照会议的持续时间长短来排序。持续时间短的会议优先安排

我们可以举出反例:蓝色方案安排的场次比绿色方案安排的场次少

策略2:按照会议的开始时间早晚来排序。开始时间早的会议优先安排

我们可以举出反例:蓝色方案安排的场次比绿色方案安排的场次少

.......

策略n:按照会议的结束时间早晚来排序。结束时间早的会议优先安排

这个策略是正确的,先上代码

package greedyalgorithms;import java.util.Arrays;
import java.util.Comparator;public class ScheduleProgram {class Progame {//会议int start;int end;public Progame(int start, int end) {this.start = start;this.end = end;}}public static class ProgameComparator implements Comparator<Progame> {//按结束时间从早到晚排序@Overridepublic int compare(Progame o1, Progame o2) {return o1.end - o2.end;//o1的结束时间比o2的结束时间晚,o2排前面//返回-1(或负数),表示不需要交换o1和o2的位置,o1排在o2前面//返回1(或正数),表示需要交换o1和o2的位置,o2排在o1前面}}//progames:需要安排的会议,timePoint:目前的时间点public int bestArrange(Progame[] progames, int timePoint) {Arrays.sort(progames, new ProgameComparator());//按照ProgameComparator比较器定义的compare()方法来排序int result = 0;for (int i = 0; i < progames.length; i++) {if(timePoint <= progames[i].start){//此时时间 <= 会议的开始时间result++;//安排好的会议的个数++timePoint = progames[i].end;//时间来到会议的结束时间}}return result;}
}

对于这个策略,我们不能够轻松举出反例,但证明需要使用严格复杂的数学证明

贪心算法在笔试时的解题套路

1、准备暴力枚举、全排列的模板,贪心算法的最优解一定在全排列之中

2、贪心策略类题目,是一句某个标准排序或是放在堆里各自排序,举出n多个比较策略。此时容易举出反例的比较策略可以直接pass

3、用策略X结合随机大样本跑对数器。如果某个策略几千万次的随机样本都相同,那么这个比较策略就是正确的

什么是对数器?对数器的作用是什么?-CSDN博客

贪心策略实现

切分金条的最小分割代价

哈夫曼编码问题

从反方向考虑,已经切好的数组如何合并使得花费最小,花费的金额为合并的数值

贪心策略:每次挑代价最小的2个数来结合

如果有一组数组:arr = {2, 3, 4, 7, 9, 2}

将数组放入小根堆中arr = {2, 2, 3, 4, 7, 9}
前两个数相加arr = {4, 3, 4, 7, 9}
排序arr = {3, 4, 4, 7, 9}
前两个数相加arr = {7, 4, 7, 9}
排序arr = {4, 7, 7, 9}
前两个数相加arr = {11, 7, 9}
排序arr = {7, 9, 11}
前两个数相加arr = {16, 11}
排序arr = {16, 11}
两个数相加arr = {27}
package greedyalgorithms;import java.util.PriorityQueue;public class LessMoneySplitGold {public static int lessMoney(int[] arr) {PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();//默认小根堆for (int i = 0; i < arr.length; i++) {priorityQueue.add(arr[i]);//将数组全部放入小根堆}int temp = 0;while (priorityQueue.size() > 1) {temp = priorityQueue.poll() + priorityQueue.poll();//弹出两个相加priorityQueue.add(temp);//加回去,排序}return priorityQueue.poll();//最后小根堆中只有一个数即为结果}
}

做项目获得的最大收益

costs[]:花费数组,profits[]: 利润数组

这里的花费仅仅表示做项目的门槛,因为在实际题目的计算中并没有减去项目花费的数

实现解析

一组项目:<花费,利润>

<2,3>,  <1,4>,  <1,1>,  <2,7>.,  <3,2>,  <4,10>

将项目放入一个以花费为依据的小根堆中,其中,利润的大小不考虑

小根堆中的项目表示都是锁住(不可做)的状态

小根堆中:<1,4>,  <1,1>,   <2,3>,  <2,7>.,  <3,2>,  <4,10>

依据初始资金m,解锁所有花费小于等于m的项目放到一个以利润为依据的大根堆中,其中,花费的大小不考虑

大根堆中的项目表示解锁(可做)的状态

m = 1; 大根堆中:<1,4>,  <1,1>

大根堆抛出第一个项目,初始资金更新为m+该项目的利润

依据新的初始资金m,在小根堆中解锁项目,在大根堆中抛出,更新利润 .......

直到到达指定的项目数k停止

此外,还有另一种情况。当没有达到指定的项目数k,但某一时刻的初始资金比较少,不能够解锁小根堆中剩下的所有项目,此时只能提前返回当前的资金m

package greedyalgorithms;import java.util.*;public class FindMaxmizedCapital {int M = 0;//初始资金int K = 0;//表示最多做k个项目class Program {public int cost;//花费public int profit;//利润public Program(int cost, int profit) {this.cost = cost;this.profit = profit;}}public int findMaxmizedCapital(List<Program> programs, int M, int K) {PriorityQueue<Program> minCostPQ = new PriorityQueue(new MinCostComparator());PriorityQueue<Program> maxProfitPQ = new PriorityQueue(new MaxProfitComparator());//全部放入小根堆中锁定for (Program pr : programs) {minCostPQ.add(pr);}for (int i = 0; i < K; i++) {//peek(): 获取元素但不删除队列首元素while (!minCostPQ.isEmpty() && minCostPQ.peek().cost <= M) {maxProfitPQ.add(minCostPQ.poll());//放入大根堆中,解锁}//更新初始资金M += maxProfitPQ.poll().profit;//当没有达到指定的项目数k,但某一时刻的初始资金比较少,不能够解锁小根堆中剩下的所有项目,此时只能提前返回当前的资金mif (maxProfitPQ.isEmpty()) {break;}}return M;}class MinCostComparator implements Comparator<Program> {@Overridepublic int compare(Program o1, Program o2) {return o1.cost - o2.cost;//compare()方法比较o1,o2的大小//正序:当o1<o2时return -1,o1=o2时return 0,o1>o2时return 1}}class MaxProfitComparator implements Comparator<Program> {@Overridepublic int compare(Program o1, Program o2) {return o2.profit - o1.profit;}}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/181342.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring的创建

文章目录 前言 一、创建一个Maven项目 二、添加spring框架支持 2.1在项目的pom.xml添加spring框架支持&#xff0c;xml配置如下  2.2添加包 总结 前言 我们通常所说的 Spring 指的是 Spring Framework&#xff08;Spring 框架&#xff09;&#xff0c;它是⼀个开源框架&a…

深入理解虚拟 DOM:提升前端性能的关键技术

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

Kubernetes Dashboard 涉及的一些常规技巧

Kubernetes Dashboard 提供了一个GUI形式的K8S集群管理工具&#xff0c;通过它我们能很容易的观察到集群资源消耗情况、服务器运行状态以及针对Pod的相关观察与操作&#xff1b; Dashboard 的相关配置 Dashboard 提供了通过配置启动命令行参数来控制其相关行为的能力&#xf…

SeaTunnel引擎下的SQL Server CDC解决方案:构建高效数据管道

在快速发展的数据驱动时代&#xff0c;实时数据处理已经成为企业决策和运营的关键因素。特别是在处理来自各种数据源的信息时&#xff0c;如何确保数据的及时、准确和高效同步变得尤为重要。本文着重介绍了如何利用 SqlServer CDC 源连接器在 SeaTunnel 框架下实现 SQL Server …

利用Spring Boot构建restful web service的详细流程

本文档构建一个简单的restful webservice&#xff0c; 在官网原文Getting Started | Building a RESTful Web Service (spring.io)的基础上进行操作 文章目录 一、项目创建流程1.1 创建项目1.2 创建资源表示类1.3 创建资源控制类 二、项目运行参考资料 一、项目创建流程 本文的…

【设计模式-2.2】创建型——简单工厂和工厂模式

说明&#xff1a;本文介绍设计模式中&#xff0c;创建型设计模式中的工厂模式&#xff1b; 飞机大战 创建型设计模式&#xff0c;关注于对象的创建&#xff0c;本文介绍的简单工厂和工厂模式同样也是。举一个游戏例子&#xff0c;如飞机大战游戏中&#xff0c;屏幕中敌人类型…

cpu飙升问题排查以及解决

1、查看内存占用排行 top -c 2、查看服务器内存使用情况 free -h 3、查看文件夹磁盘空间大小 Linux 查看各文件夹大小命令du -h --max-depth1 (1)查看文件目录一级目录磁盘空间 du -h --max-depth1 (2&#xff09;查看指定文件目录 du sh home --max-depth2 4、Linux下…

【代码】微电网两阶段鲁棒优化经济调度方法(完美复现)matlab-yalmip-cplex/gurobi

程序名称&#xff1a;两阶段鲁棒优化—微电网两阶段鲁棒优化经济调度方法_刘一欣 实现平台&#xff1a;matlab-yalmip-cplex/gurobi 简介&#xff1a;针对微电网内可再生能源和负荷的不确定性&#xff0c;建立了 min-max-min 结构的两阶段鲁棒优化模型&#xff0c;可得到最恶…

DS八大排序之直接插入排序和希尔排序

前言 我们前面几期介绍了线性和非线性的基本数据结构。例如顺序表、链表、栈和队列、二叉树等~&#xff01;本期和接下来的几期我们来详解介绍各个排序的概念、实现以及性能分析&#xff01; 本期内容 排序的概念以及其运用 常见的排序算法 直接插入排序 希尔排序 一、排序的…

“SRP模型+”多技术融合在生态环境脆弱性评价模型构建、时空格局演变分析与RSEI 指数的生态质量评价及拓展

近年来&#xff0c;国内外学者在生态系统的敏感性、适应能力和潜在影响等方面开展了大量的生态脆弱性研究&#xff0c;他们普遍将生态脆弱性概念与农牧交错带、喀斯特地区、黄土高原区、流域、城市等相结合&#xff0c;评价不同类型研究区的生态脆弱特征&#xff0c;其研究内容…

Jmeter性能综合实战——签到及批量签到

提取性能测试的三个方面&#xff1a;核心、高频、基础功能 签 到 请 求 步 骤 1、准备工作&#xff1a; 签到线程组 n HTTP请求默认值 n HTTP cookie 管理器 n 首页访问请求 n 登录请求 n 查看结果树 n 调试取样器 l HTTP代理服务器 &#xff08;1&#xff09;创建线…

vue建立组件无校验版

实现功能&#xff1a; 切换&#xff0c;相当于tab 1、非组件代码&#xff1a; <template><div><div class"tabStyle"><div v-for"(item,index) in tabTitle" :key"index" class"bordItemStyle" :class"c…

Spring框架体系及Spring IOC思想

目录 Spring简介Spring体系结构SpringIOC控制反转思想自定义对象容器Spring实现IOCSpring容器类型容器接口容器实现类对象的创建方式使用构造方法使用工厂类的方法使用工厂类的静态方法对象的创建策略对象的销毁时机生命周期方法获取Bean对象的方式通过id/name获取通过类型获取…

Kvm 管理器突然打不开 启动虚拟系统管理器出错: g-dbus-error-quark: GDBus.Error:org.freed

环境&#xff1a; Ubuntu20.04 KVM mobaxterm 11.1 问题描述&#xff1a; 启动虚拟系统管理器出错: g-dbus-error-quark: GDBus.Error:org.freedesktop.DBus.Error.NoReply: Message recipient disconnected from message bus without replying (4)Traceback (most recen…

一文搞定XMLHttpRequest,AJAX,Promise,Axios及操作实战

XMLHttpRequest,AJAX,Promise,Axios都是发送异步请求的工具&#xff0c;只是使用的场合和方式有所不同。都是一种用于创建快速动态网页的技术 1、认识同步请求和异步请求&#xff1f; 1.1、认识同步请求&#xff1f; 1、我们点击淘宝首页的男装&#xff0c;进入男装页面的这…

C++中的模板

模板概论 c提供了函数模板 (function template.) 所谓函数模板&#xff0c;实际上是建立一个通用函 数&#xff0c;其函数类型和形参类型不具体制定&#xff0c;用一个虚拟的类型来代表。这个通用函数 就成为函数模板。凡是函数体相同的函数都可以用这个模板代替&#xff0c;不…

好物分享(领劵优惠好手)

本次分享一个领取领优惠、充值、会员、购物优惠等功能 部分截图 需要的点击下方按钮 前往体验 感谢大家的支持 更多内容请关注微信小程序&#xff0c;源码、插件、模板及时更新

【C++干货铺】STL简述 | string类的使用指南

个人主页点击直达&#xff1a;小白不是程序媛 C系列专栏&#xff1a;C干货铺 代码仓库&#xff1a;Gitee 目录 什么是STL STL的版本 STL的六大组件 STL的缺陷 string类 C语言中的字符串 标准库中的string类 string类常用的接口使用指南 string类中常见的构造 strin…

CUDA安装及环境配置——最新详细版

确定安装版本 在安装之前呢&#xff0c;我们需要确定三件事 第一&#xff1a;查看显卡支持的最高CUDA的版本&#xff0c;以便下载对应的CUDA安装包 第二&#xff1a;查看对应CUDA对应的VS版本&#xff0c;以便下载并安装对应的VS版本&#xff08;vs需要先安装&#xff09; 第三…

【vue脚手架配置代理+github用户搜索案例+vue项目中常用的发送Ajax请求的库+slot插槽】

vue脚手架配置代理github用户搜索案例vue项目中常用的发送Ajax请求的库slot插槽 1 vue脚手架配置代理2 github用户搜索案例2.1 静态列表2.2 列表展示2.3 完善案例 3 vue项目中常用的发送Ajax请求的库3.1 xhr3.2 jQuery3.3 axios3.4 fetch3.5 vue-resource 4 slot 插槽4.1 效果4…