线性可分SVM摘记

线性可分SVM摘记

  • 0. 线性可分
  • 1. 训练样本到分类面的距离
  • 2. 函数间隔和几何间隔、(硬)间隔最大化
  • 3. 支持向量

\qquad 线性可分的支持向量机是一种二分类模型,支持向量机通过核技巧可以成为非线性分类器。本文主要分析了线性可分的支持向量机模型,主要取自于李航《统计学习方法》第七章。

0. 线性可分

\qquad 如下图所示,考虑训练数据“线性可分”的情况:
\qquad 在这里插入图片描述
\qquad 假设分类面 w T x + b = 0 \boldsymbol w^T\boldsymbol x+b=0 wTx+b=0 可以将两类数据完整分开,任一训练样本 x \boldsymbol x x输出值(目标值) y y y 满足:

y = sgn ( w T x + b ) = { + 1 , w T x + b > 0 ( x ∈ ℓ 1 ) − 1 , w T x + b < 0 ( x ∈ ℓ 2 ) \qquad\qquad\qquad y=\text{sgn}(\boldsymbol w^T\boldsymbol x+b)=\begin{cases}+1,\quad\boldsymbol w^T\boldsymbol x+b>0\ (\boldsymbol x\in\ell_1)\\-1,\quad\boldsymbol w^T\boldsymbol x+b<0\ (\boldsymbol x\in\ell_2)\end{cases} y=sgn(wTx+b)={+1,wTx+b>0 (x1)1,wTx+b<0 (x2)
\qquad

1. 训练样本到分类面的距离

\qquad 任一样本 x \boldsymbol x x 到分类面的垂直距离为: r = y ( w T x + b ) ∥ w ∥ r=\dfrac{y(\boldsymbol w^T\boldsymbol{x}+b)}{\Vert\boldsymbol w\Vert} r=wy(wTx+b)

∙ \quad\bullet  正例 x i \boldsymbol x_i xi(满足 w T x i + b > 0 , y i = + 1 \boldsymbol w^T\boldsymbol x_i+b>0,\ y_i=+1 wTxi+b>0, yi=+1

\qquad\qquad 在这里插入图片描述

\qquad 假设 x i \boldsymbol x_i xi 到分类面的距离为 r i r_i ri,向量 x ˉ \bar{\boldsymbol x} xˉ 在分类面(满足 w T x ˉ + b = 0 \boldsymbol{w}^T\bar{\boldsymbol{x}}+b=0 wTxˉ+b=0),显然 x i = x ˉ + r i w ∥ w ∥ \boldsymbol x_i=\bar{\boldsymbol x}+r_i\dfrac{\boldsymbol w}{\Vert\boldsymbol w\Vert} xi=xˉ+riww

\qquad 那么
w T x i + b = w T ( x ˉ + r i w ∥ w ∥ ) + b = w T x ˉ + b + w T r i w ∥ w ∥ = r i w T w ∥ w ∥ = r i ∥ w ∥ \qquad\qquad\qquad\begin{aligned}\boldsymbol w^T\boldsymbol x_i+b&=\boldsymbol w^T(\bar{\boldsymbol x}+r_i\frac{\boldsymbol w}{\Vert\boldsymbol w\Vert})+b\\ &=\boldsymbol w^T\bar{\boldsymbol x}+b+\boldsymbol w^Tr_i\frac{\boldsymbol w}{\Vert\boldsymbol w\Vert}\\ &=r_i\frac{\boldsymbol w^T\boldsymbol w}{\Vert\boldsymbol w\Vert}\\ &=r_i\Vert\boldsymbol w\Vert\end{aligned} wTxi+b=wT(xˉ+riww)+b=wTxˉ+b+wTriww=riwwTw=riw

\qquad 可得到正例 x i \boldsymbol x_i xi 到分类面的垂直距离 r i = w T x i + b ∥ w ∥ r_i=\dfrac{\boldsymbol w^T\boldsymbol x_i+b}{\Vert\boldsymbol w\Vert} ri=wwTxi+b

\qquad
∙ \quad\bullet  负例 x j \boldsymbol x_j xj(满足 w T x j + b < 0 , y j = − 1 \boldsymbol w^T\boldsymbol x_j+b<0,\ y_j=-1 wTxj+b<0, yj=1

\qquad\qquad 在这里插入图片描述

\qquad 假设 x j \boldsymbol x_j xj 到分类面的距离为 r j r_j rj,向量 x ˉ \bar{\boldsymbol x} xˉ 在分类面(满足 w T x ˉ + b = 0 \boldsymbol w^T\bar{\boldsymbol x}+b=0 wTxˉ+b=0),显然 x j = x ˉ − r j w ∥ w ∥ \boldsymbol x_j=\bar{\boldsymbol x}-r_j\dfrac{\boldsymbol w}{\Vert\boldsymbol w\Vert} xj=xˉrjww

\qquad 那么
w T x j + b = w T ( x ˉ − r j w ∥ w ∥ ) + b = w T x ˉ + b − w T r j w ∥ w ∥ = − r j w T w ∥ w ∥ = − r j ∥ w ∥ \qquad\qquad\qquad\begin{aligned}\boldsymbol w^T\boldsymbol x_j+b&=\boldsymbol w^T(\bar{\boldsymbol x}-r_j\frac{\boldsymbol w}{\Vert\boldsymbol w\Vert})+b\\ &=\boldsymbol w^T\bar{\boldsymbol x}+b-\boldsymbol w^Tr_j\frac{\boldsymbol w}{\Vert\boldsymbol w\Vert}\\ &=-r_j\frac{\boldsymbol w^T\boldsymbol w}{\Vert\boldsymbol w\Vert}\\ &=-r_j\Vert\boldsymbol w\Vert\end{aligned} wTxj+b=wT(xˉrjww)+b=wTxˉ+bwTrjww=rjwwTw=rjw
\qquad 可得到负例 x j \boldsymbol x_j xj 到分类面的垂直距离 r j = − w T x j + b ∥ w ∥ r_j=-\dfrac{\boldsymbol w^T\boldsymbol x_j+b}{\Vert\boldsymbol w\Vert} rj=wwTxj+b
\qquad

2. 函数间隔和几何间隔、(硬)间隔最大化

\qquad 由于任一训练样本 x i \boldsymbol x_i xi 的输出值 y y y 满足: y = { + 1 , w T x i + b > 0 ( ∀ x i ∈ ℓ 1 ) − 1 , w T x i + b < 0 ( ∀ x i ∈ ℓ 2 ) y=\begin{cases}+1,\quad\boldsymbol w^T\boldsymbol x_i+b>0\ \ (\forall\ \boldsymbol x_i\in\ell_1)\\-1,\quad\boldsymbol w^T\boldsymbol x_i+b<0\ \ (\forall\ \boldsymbol x_i\in\ell_2)\end{cases} y={+1,wTxi+b>0  ( xi1)1,wTxi+b<0  ( xi2),可定义两种间隔 ( margin ) (\text{margin}) (margin)来描述“训练样本 x i \boldsymbol x_i xi 到分类面的远近”。

\qquad
∙ \quad\bullet  函数间隔 ( functional margin ) (\text{functional margin}) (functional margin)

γ ^ i = y i ( w T x i + b ) = ∣ w T x i + b ∣ \qquad\qquad\hat{\gamma}_i=y_i(\boldsymbol w^T\boldsymbol x_i+b)=\vert\boldsymbol w^T\boldsymbol x_i+b\vert γ^i=yi(wTxi+b)=wTxi+b

函数间隔只能够相对地描述“训练样本 x i \boldsymbol x_i xi 到分类面的远近”。
例如, H 1 : w T x + b = 0 \mathcal H_1:\ \boldsymbol w^T\boldsymbol x+b=0 H1: wTx+b=0 H 2 : λ w T x + λ b = 0 \mathcal H_2:\ \lambda\boldsymbol w^T\boldsymbol x+\lambda b=0 H2: λwTx+λb=0 实际上是指同一个分类面(假设 λ > 0 \lambda>0 λ>0
 
对训练样本 x i \boldsymbol x_i xi 而言,却有 { γ ^ 1 i = ∣ w T x i + b ∣ γ ^ 2 i = λ ∣ w T x i + b ∣ \begin{cases}\hat{\gamma}_{1i}=\vert\boldsymbol w^T\boldsymbol x_i+b\vert\\ \hat{\gamma}_{2i}=\lambda\vert\boldsymbol w^T\boldsymbol x_i+b\vert \end{cases} {γ^1i=wTxi+bγ^2i=λwTxi+b,函数间隔 γ ^ 2 i = λ γ ^ 1 i \hat{\gamma}_{2i}=\lambda\hat{\gamma}_{1i} γ^2i=λγ^1i

\qquad
∙ \quad\bullet  几何间隔 ( geometricl margin ) (\text{geometricl margin}) (geometricl margin)

γ i = y i r i = y i ( w T x i + b ) ∥ w ∥ = ∣ w T x i + b ∣ ∥ w ∥ \qquad\qquad \gamma_i=y_ir_i=\dfrac{y_i(\boldsymbol w^T\boldsymbol x_i+b)}{\Vert\boldsymbol w\Vert}=\dfrac{\vert\boldsymbol w^T\boldsymbol x_i+b\vert}{\Vert\boldsymbol w\Vert} γi=yiri=wyi(wTxi+b)=wwTxi+b

几何间隔就是“训练样本 x i \boldsymbol x_i xi 到分类面的垂直距离”,也就是“规范化的函数间隔”。
 
上例中, { γ 1 i = γ ^ 1 i ∥ w ∥ = ∣ w T x i + b ∣ ∥ w ∥ γ 2 i = γ ^ 2 i ∥ λ w ∥ = λ ∣ w T x i + b ∣ ∥ λ w ∥ = ∣ w T x i + b ∣ ∥ w ∥ \begin{cases}\gamma_{1i}=\dfrac{\hat{\gamma}_{1i}}{\Vert\boldsymbol w\Vert}=\dfrac{\vert\boldsymbol w^T\boldsymbol x_i+b\vert}{\Vert\boldsymbol w\Vert} \\ \\\gamma_{2i}=\dfrac{\hat{\gamma}_{2i}}{\Vert\lambda\boldsymbol w\Vert}=\dfrac{\lambda\vert\boldsymbol w^T\boldsymbol x_i+b\vert}{\Vert\lambda\boldsymbol w\Vert}=\dfrac{\vert\boldsymbol w^T\boldsymbol x_i+b\vert}{\Vert\boldsymbol w\Vert} \end{cases} γ1i=wγ^1i=wwTxi+bγ2i=λwγ^2i=λwλwTxi+b=wwTxi+b,几何间隔 γ 1 i = γ 2 i \gamma_{1i}=\gamma_{2i} γ1i=γ2i,仍然相等。

\qquad 显然,函数间隔几何间隔之间的关系为:

γ = γ ^ ∥ w ∥ \qquad\qquad\textcolor{crimson}{\gamma=\dfrac{\hat{\gamma}}{\Vert\boldsymbol w\Vert}} γ=wγ^

\qquad
∙ \quad\bullet  以最大化训练样本的几何间隔为目标函数,并定义约束最优化问题

\qquad 约束最优化问题(1)

max ⁡ w , b γ s . t . y i ( w T x i + b ) ∥ w ∥ ≥ γ , ∀ x i \qquad\qquad\qquad\textcolor{indigo}{\begin{aligned}&\max_{\boldsymbol w,b}\ \gamma\\ &\ s.t.\ \ \ \dfrac{y_i(\boldsymbol w^T\boldsymbol x_i+b)}{\Vert\boldsymbol w\Vert}\ge \gamma,\quad \forall\ \boldsymbol x_i\end{aligned}} w,bmax γ s.t.   wyi(wTxi+b)γ, xi

也就是,在确保所有训练样本到分类面的垂直距离都大于 γ \gamma γ 的前提下,尽可能让(几何)间隔最大。

\qquad 利用两种间隔之间的关系 γ = γ ^ ∥ w ∥ \gamma=\dfrac{\hat{\gamma}}{\Vert\boldsymbol w\Vert} γ=wγ^,在约束最优化问题(1)中使用函数间隔 γ ^ \hat{\gamma} γ^ 来描述几何间隔 γ \gamma γ,也就是

\qquad 约束最优化问题(2)

max ⁡ w , b γ ^ ∥ w ∥ s . t . y i ( w T x i + b ) ≥ γ ^ , ∀ x i \qquad\qquad\qquad\textcolor{indigo}{\begin{aligned}&\max_{\boldsymbol w,b}\ \dfrac{\hat{\gamma}}{\Vert\boldsymbol w\Vert}\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge \hat{\gamma},\quad \forall\ \boldsymbol x_i\end{aligned}} w,bmax wγ^ s.t.   yi(wTxi+b)γ^, xi

\qquad  
\qquad 考虑满足约束最优化问题(2)的同一个分类面的两种表示 H 1 : ( w , b ) \mathcal H_1:(\boldsymbol w,b) H1:(w,b) H 2 : ( λ w , λ b ) \mathcal H_2:(\lambda\boldsymbol w,\lambda b) H2:(λw,λb),对于任一训练样本 x i \boldsymbol x_i xi 而言( λ > 0 \lambda>0 λ>0),那么:

\qquad H 1 : w T x + b = 0 \quad\textcolor{firebrick}{\mathcal H_1}:\ \boldsymbol w^T\boldsymbol x+b=0 H1: wTx+b=0   (函数间隔为 γ ^ = ∣ w T x i + b ∣ \hat\gamma=\vert\boldsymbol w^T\boldsymbol x_i+b\vert γ^=wTxi+b

⟹ { 目标函数值: γ ^ ∥ w ∥ 约束函数:  y i ( w T x i + b ) ≥ γ ^ , ∀ x i \qquad\qquad\quad\Longrightarrow\quad\begin{cases}目标函数值:\quad\dfrac{\hat\gamma}{\Vert\boldsymbol w\Vert}\\ 约束函数: \quad y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge \hat\gamma,\quad \forall\ \boldsymbol x_i\end{cases} 目标函数值:wγ^约束函数: yi(wTxi+b)γ^, xi

\qquad H 2 : λ w T x + λ b = 0 \quad\textcolor{firebrick}{\mathcal H_2}:\ \lambda\boldsymbol w^T\boldsymbol x+\lambda b=0 H2: λwTx+λb=0 (函数间隔为 λ γ ^ \lambda\hat\gamma λγ^

⟹ { 目标函数值: λ γ ^ ∥ λ w ∥ 约束函数:  y i λ ( w T x i + b ) ≥ λ γ ^ , ∀ x i \qquad\qquad\quad\Longrightarrow\quad\begin{cases}目标函数值:\quad\dfrac{\lambda\hat\gamma}{\Vert\lambda\boldsymbol w\Vert}\\ 约束函数: \quad y_i\lambda(\boldsymbol w^T\boldsymbol x_i+b) \ge \lambda\hat\gamma,\quad \forall\ \boldsymbol x_i\end{cases} 目标函数值:λwλγ^约束函数: yiλ(wTxi+b)λγ^, xi
\qquad
\qquad 显然,权值 ( w , b ) (\boldsymbol w,b) (w,b) 与其同比例的缩放值 ( λ w , λ b ) (\lambda\boldsymbol w,\lambda b) (λw,λb) 对于约束最优化问题(2)而言是没有影响的。

\qquad
∙ \quad\bullet  构造凸二次规划问题

\qquad 约束最优化问题(2)中,可以简单地取函数间隔 γ ^ = 1 \hat\gamma=1 γ^=1

假设待求解的权值为 ( w , b ) (\boldsymbol w,b) (w,b), 样本 x \boldsymbol x x w T x + b = 0 \boldsymbol w^T\boldsymbol x+b=0 wTx+b=0 的几何间隔为 γ ^ ∥ w ∥ \dfrac{\hat\gamma}{\Vert\boldsymbol w\Vert} wγ^
函数间隔 γ ^ = 1 \hat\gamma=1 γ^=1 时的几何间隔写为 1 ∥ λ ′ w ∥ \dfrac{1}{\Vert\lambda^{\prime}\boldsymbol w\Vert} λw1,也就是 ( w , b ) (\boldsymbol w,b) (w,b) 缩放为了 ( λ ′ w , λ ′ b ) , λ ′ = 1 / γ (\lambda^{\prime}\boldsymbol w,\lambda^{\prime}b),\ \lambda^{\prime}=1/\gamma (λw,λb), λ=1/γ
w T x + b = 0 \boldsymbol w^T\boldsymbol x+b=0 wTx+b=0 λ ′ w T x + λ ′ b = 0 \lambda^{\prime}\boldsymbol w^T\boldsymbol x+\lambda^{\prime}b=0 λwTx+λb=0 是同一个分类面

\qquad 那么,约束最优化问题(2)就可以写为:

max ⁡ w , b γ ^ ∥ w ∥ s . t . y i ( w T x i + b ) ≥ γ ^ , ∀ x i ⟹ γ ^ = 1 max ⁡ w , b 1 ∥ w ∥ s . t . y i ( w T x i + b ) ≥ 1 , ∀ x i \qquad\qquad\textcolor{darkblue}{\begin{aligned}&\max_{\boldsymbol w,b}\ \dfrac{\hat\gamma}{\Vert\boldsymbol w\Vert}\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge \hat\gamma,\ \forall\ \boldsymbol x_i\end{aligned}}\quad\overset{\hat\gamma=1}\Longrightarrow\qquad\textcolor{royalblue}{\begin{aligned}&\max_{\boldsymbol w,b}\ \dfrac{1}{\Vert\boldsymbol w\Vert}\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge 1,\ \forall\ \boldsymbol x_i\end{aligned}} w,bmax wγ^ s.t.   yi(wTxi+b)γ^,  xiγ^=1w,bmax w1 s.t.   yi(wTxi+b)1,  xi

\qquad
\qquad 又由于 max ⁡ 1 ∥ w ∥ ⟺ min ⁡ 1 2 ∥ w ∥ 2 \max\ \dfrac{1}{\Vert\boldsymbol w\Vert}\Longleftrightarrow\min\ \dfrac{1}{2}\Vert\boldsymbol w\Vert^2 max w1min 21w2,因此可以构造出一个凸二次规划问题

\qquad 约束最优化问题(3)

min ⁡ w , b 1 2 ∥ w ∥ 2 s . t . y i ( w T x i + b ) ≥ 1 , ∀ x i \qquad\qquad\qquad\textcolor{indigo}{\begin{aligned}&\min_{\boldsymbol w,b}\ \dfrac{1}{2}\Vert\boldsymbol w\Vert^2\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge 1,\quad \forall\ \boldsymbol x_i\end{aligned}} w,bmin 21w2 s.t.   yi(wTxi+b)1, xi

\qquad

3. 支持向量

\qquad 支持向量 ( support vector ) (\text{support\ vector}) (support vector) 是指距离分类面最近的训练样本(红色 + 点),两个(红色点线)超平面 w T x + b = 1 \boldsymbol w^T\boldsymbol x+b=1 wTx+b=1 w T x + b = − 1 \boldsymbol w^T\boldsymbol x+b=-1 wTx+b=1 之间的距离,称为间隔 ( margin ) (\text{margin}) (margin)
\qquad 在这里插入图片描述
\qquad 考察该凸二次规划最优化问题

min ⁡ w , b 1 2 ∥ w ∥ 2 s . t . y i ( w T x i + b ) ≥ 1 , ∀ x i \qquad\qquad\qquad\begin{aligned}&\min_{\boldsymbol w,b}\ \dfrac{1}{2}\Vert\boldsymbol w\Vert^2\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge 1,\quad \forall\ \boldsymbol x_i\end{aligned} w,bmin 21w2 s.t.   yi(wTxi+b)1, xi

\qquad 支持向量也是使得约束条件的等式成立的点,即: y ( w T x + b ) = 1 y(\boldsymbol w^T\boldsymbol x+b)=1 y(wTx+b)=1。在线性可分的情况下,选择不同的点作为支持向量,就可以确定不同的分离超平面 w T x + b = 0 \boldsymbol w^T\boldsymbol x+b=0 wTx+b=0

  • (正例的)支持向量 x i , y i = + 1 : y i ( w T x i + b ) = 1 ⇒ H 1 : w T x i + b = 1 \boldsymbol x_i,y_i=+1:\ y_i(\boldsymbol w^T\boldsymbol x_i+b)=1 \qquad\Rightarrow\quad H_1:\boldsymbol w^T\boldsymbol x_i+b=1 xi,yi=+1: yi(wTxi+b)=1H1:wTxi+b=1
    其余的 (正例的)训练样本满足 w T x i + b > 1 \boldsymbol w^T\boldsymbol x_i+b>1 wTxi+b>1
  • (负例的)支持向量 x j , y j = − 1 : y j ( w T x j + b ) = 1 ⇒ H 2 : w T x j + b = − 1 \boldsymbol x_j,y_j=-1:y_j(\boldsymbol w^T\boldsymbol x_j+b)=1 \qquad\Rightarrow\quad H_2:\boldsymbol w^T\boldsymbol x_j+b=-1 xj,yj=1:yj(wTxj+b)=1H2:wTxj+b=1
    其余的 (负例的)训练样本满足 w T x i + b < − 1 \boldsymbol w^T\boldsymbol x_i+b<-1 wTxi+b<1
  • 两个超平面 H 1 H_1 H1 H 2 H_2 H2 之间的间隔为 2 ∥ w ∥ \dfrac{2}{\Vert\boldsymbol w\Vert} w2

\qquad
\qquad
【写在最后】SVM的资料太多了,越写越觉得没什么特别的内容值得去写。攒在草稿箱里太久,发出来就当留个记录吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/180781.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac docker 部署fastdfs服务(总结)

// 分别启动tracker、storage docker run -d --name tracker -p 22122:22122 -v /Users/longchen/Users/longchen/docker/fastdfs/tracker:/var/fdfs delron/fastdfs trackerdocker run -dti --name storage -p 8888:8888 -p 23000:23000 -e TRACKER_SERVER172.19.0.61:22122 …

【藏经阁一起读】(78)__《Apache Tomcat 的云原生演进》

【藏经阁一起读】&#xff08;78&#xff09; __《Apache Tomcat 的云原生演进》 目录 __《Apache Tomcat 的云原生演进》 一、读后感 二、文章知识点摘要 2.1、Tomcat的技术内幕和在喜马拉雅的实践 2.2、GraalVM static compilation in web container application&…

Docker在实际应用开发中的应用-AI生成

Docker是一种开源的应用程序容器化技术&#xff0c;可以将应用程序及其依赖关系打包成一个可移植的容器&#xff0c;从而简化了应用程序的部署、管理和运行。Docker的核心组件包括镜像、容器、仓库、网络和数据卷等。 Docker的优势主要体现在以下几个方面&#xff1a; 高效的应…

代洋集团,引领绿色能源新潮流

代洋集团&#xff0c;引领绿色能源新潮流&#xff0c;成功安装了先进的太阳能电池阵列。这一环保举措&#xff0c;不仅彰显了我们对可持续发展的执着追求&#xff0c;更为整个园区带来了绿色能源的革新。 这个高效的太阳能电池阵列&#xff0c;利用纯净的阳光转化为清洁电力&a…

重生奇迹MU魔法师操作技能

重生奇迹MU魔法师增加伤害加点方式 一、智力敏捷加点&#xff1a;2点智力1点敏捷&#xff0c;这种加点就是智敏结合的加点了&#xff0c;属性是不错的&#xff0c;提升了非常多的属性点&#xff0c;智力是偏重输出的&#xff0c;也是法师最常见的一种加点了&#xff0c;输出伤…

随笔(持续更新)

随笔&#xff08;持续更新&#xff09; 1、某个网络有没有连通 要获取某个网站的ip地址&#xff0c;可以通过ping它的域名就可以得到IP地址 例如&#xff1a;我想获取百度的ip地址&#xff08;Windows环境&#xff09; C:\Users\tq>ping www.baidu.com正在 Ping www.a.s…

Typescript中 interface 和 type 的区别是什么?

在 TypeScript 中&#xff0c;interface 和 type 都用于定义类型&#xff0c;但它们有一些区别。 1. 语法差异&#xff1a; interface 关键字用于声明接口&#xff0c;使用 interface 可以定义对象的形状、函数的签名等。 type 关键字用于声明类型别名&#xff0c;可以给一个…

pdf文件编辑,[增删改查]

pdf文件是投标文件中必不可少的格式&#xff0c;传统的方式先编辑word格式&#xff0c;最后生成pdf&#xff0c;但是有时候需要直接编辑pdf文件&#xff0c;编辑pdf的工具无疑 “adobe acrobat dc”是最好用的之一了 1.把图片文件添加到pdf指定位置&#xff0c;例如把一张图片添…

【Maven】 must be “pom“ but is “jar“ 报错

报错内容&#xff1a;Invalid packaging for parent POM com.liun:KnowledgeGuide:1.0-SNAPSHOT (D:\gitcangku\KnowledgeGuide\KnowledgeGuide\pom.xml), must be "pom" but is "jar" 打包无效&#xff0c;必须是“pom”但为“jar” 发生场景&#xff1a…

C++数据结构:图

目录 一. 图的基本概念 二. 图的存储结构 2.1 邻接矩阵 2.2 邻接表 三. 图的遍历 3.1 广度优先遍历 3.2 深度优先遍历 四. 最小生成树 4.1 最小生成树获取策略 4.2 Kruskal算法 4.3 Prim算法 五. 最短路径问题 5.1 Dijkstra算法 5.2 Bellman-Ford算法 5.3 Floyd-…

Unity 2022 LTS版本的稳定性

1&#xff09;Unity 2022 LTS版本的稳定性 2&#xff09;多个小资源包合并为大资源包的疑问 3&#xff09;启动Unity导入变动的资源时&#xff0c;Singleton ScriptableObject 加载不到 这是第362篇UWA技术知识分享的推送&#xff0c;精选了UWA社区的热门话题&#xff0c;涵盖了…

HCIP-十二、BGP常用属性

十二、BGP常用属性 实验拓扑实验需求及解法1.IP 地址已配置&#xff0c;自行测试直连。2.AS100 中运行 OSPF3.AS200 中运行 ISIS4.运行 BGP5.发布 BGP 路由6.修改起源属性 Origin7.修改 AS-path8.修改本地优先 Local-preference9.修改 MED 实验拓扑 实验需求及解法 本实验模拟…

【算法】滑动窗口题单——1.定长滑动窗口⭐

文章目录 1456. 定长子串中元音的最大数目2269. 找到一个数字的 K 美丽值1984. 学生分数的最小差值&#xff08;排序&#xff09;643. 子数组最大平均数 I1343. 大小为 K 且平均值大于等于阈值的子数组数目2090. 半径为 k 的子数组平均值2379. 得到 K 个黑块的最少涂色次数1052…

CCFCSP试题编号:202109-2试题名称:非零段划分

用差分法 #include<iostream> #include<algorithm> #include<cstring> using namespace std;const int N 500000; const int M 10000; int a[N 2 ] { 0 }; int d[M 1] { 0 };int main() {int n;cin >> n;for (int i 1; i < n; i){cin >&g…

选择排序:简单但有效的排序策略

选择排序&#xff1a;简单但有效的排序策略 欢迎来到我们的编程博客&#xff01;今天&#xff0c;我们将深入探讨一种基础但非常重要的排序算法&#xff1a;选择排序。这种算法简单易学&#xff0c;是理解更复杂排序算法的良好起点。 什么是选择排序&#xff1f; 选择排序是…

YOLOv5独家原创改进:自研独家创新MSAM注意力,通道注意力升级,魔改CBAM

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文自研创新改进&#xff1a;MSAM&#xff08;CBAM升级版&#xff09;&#xff1a;通道注意力具备多尺度性能&#xff0c;多分支深度卷积更好的提取多尺度特征&#xff0c;最后高效结合空间注意力 1&#xff09;作为注意力MSAM使用&am…

迷你洗衣机哪个牌子好又实惠?口碑最好的小型洗衣机

不得不说洗衣机的发明解放了我们的双手&#xff0c;而我们从小到大就有这个意识&#xff0c;贴身衣物不可以和普通的衣服一起丢进去洗衣机一起&#xff0c;而内衣裤上不仅有肉眼看见的污渍还有手上根本无法消灭的细菌&#xff0c;但是有一款专门可以将衣物上的细菌杀除的内衣洗…

基于单片机环境监测温湿度PM2.5系统设计

**单片机设计介绍&#xff0c;基于单片机环境监测温湿度PM2.5系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 设计一个基于单片机环境监测温湿度PM2.5的系统是一个非常有意义的项目。以下是一个基本的介绍&#xff1a; …

GAN:DCGAN-深度卷积生成对抗网络

论文&#xff1a;https://arxiv.org/pdf/1511.06434.pdf 发表&#xff1a;ICLR 2016 一、架构创新 1&#xff1a;全卷积网络&#xff1a;用逐步卷积代替确定性的空间池化函数&#xff08;如maxpooling&#xff09;&#xff0c;使网络学习自己的空间下采样。使用这种方法&#…

RFID资产管理系统全功能详解!高效管理从这里开始!

在现代商业环境中&#xff0c;RFID资产管理系统正成为企业管理不可或缺的先进工具。现代企业管理正处于数字化的浪潮中&#xff0c;而RFID资产管理系统正是这场浪潮中的一颗璀璨明珠。在这篇文章中&#xff0c;我们将全方位解析RFID资产管理系统的功能&#xff0c;助您深入了解…