看懂YOLOv7混淆矩阵的含义,正确计算召回率、精确率、误检率、漏检率

文章目录

  • 1、准确率、精确率、召回率、误报率、漏报率概念及公式
    • 1.1 准确率 Accuracy
    • 1.2 精确率 Precision
    • 1.3 召回率 Recall
    • 1.4 F1-Score
    • 1.5 误检率 false rate
    • 1.6 漏检率 miss rate
  • 2、YOLOv7混淆矩阵分析

1、准确率、精确率、召回率、误报率、漏报率概念及公式

  • 重点参考博文:【机器学习】准确率、精确率、召回率、误报率、漏报率概念及公式
  • 误报率、漏报率、准确率和召回率(虚警率、漏警率)
    • 误报率和漏报率的关系:一般来说无法同时降低误报率和漏报率。举个例子来说,某门卫为了防止小偷进入小区,凡是过往人员都要盘查,这时漏报率为0,但是显著提高了误报率;反之如果门卫什么都不做,任由人员出入,那么这是漏报率就会提高,而误报率降低为0。
    • 漏检率 + 召回率 = 1,也就是召回率越高,漏检率越低
  • 【积累】机器学习知识,看里面的1.1.2 二分类问题

阳性(正)样例 P 和 阴性(负)样例 N

  • 正样本预测为正样本的为True positive(TP)
  • 正样本预测为负样本的为False negative(FN)
  • 负样本预测为正样本的为False positive(FP)
  • 负样本预测为负样本的为True negative(TN)

所以有:
P = T P + F N N = F P + T N P = TP + FN \\ N = FP + TN P=TP+FNN=FP+TN

1.1 准确率 Accuracy

  • 反映模型对整体样本判断正确的能力,值越大越好
  • 但样本不平衡时,ACC 不能很好地评估模型性能
    A c c = T P + T F T P + F P + T N + F N Acc = \frac{TP + TF}{TP + FP + TN + FN} Acc=TP+FP+TN+FNTP+TF

1.2 精确率 Precision

  • 反映模型正确预测正样本精度的能力,值越大越好
  • 也称精度查准率阳性预测值(positive predictive value, PPV)
  • 即:衡量在所有预测为正样本的数据中,有多少是真正的正样本
    P r e c i s i o n ( P P V ) = T P T P + F P Precision(PPV) = \frac{TP}{TP + FP} Precision(PPV)=TP+FPTP

1.3 召回率 Recall

  • 反映模型正确预测正样本全度的能力,值越大越好
  • 也称真阳性率(true positive rate, TPR),灵敏度查全率
  • 即:衡量在所有真实的正样本中,有多少被预测为正样本
    R e c a l l ( T P R ) = T P T P + F N = T P P Recall(TPR) = \frac{TP}{TP + FN}=\frac{TP}{P} Recall(TPR)=TP+FNTP=PTP

1.4 F1-Score

  • 是对精确率和召回率的加权求和
    F 1 − S c o r e = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1-Score=\frac{2×Precision×Recall}{Precision+Recall} F1Score=Precision+Recall2×Precision×Recall

1.5 误检率 false rate

  • 反映模型正确预测正样本纯度的能力,值越小越好
  • 又称虚警率假阳性率(False Positive Rate)
  • 即:在所有真实的负样本中,有多少被预测为正样本
    F P R = F P T N + F P = F P N FPR=\frac{FP}{TN + FP}=\frac{FP}{N} FPR=TN+FPFP=NFP

1.6 漏检率 miss rate

  • 反应模型正确预测负样本纯度的能力,值越小越好
  • 又称错检率漏警率假阴性率(False Negative Rate)
  • 即:在所有真实的正样本中,有多少被预测为负样本
  • 漏检率 + 召回率 = 1
    F N R = F N T P + F N = F N P FNR=\frac{FN}{TP+FN}=\frac{FN}{P} FNR=TP+FNFN=PFN

2、YOLOv7混淆矩阵分析

  • 应该YOLO其他系列的也可以这样分析
  • 图中格子里面的数字表示比例,其余重要的含义在图中已表示

在这里插入图片描述

例如,通过计算可以得到:对角线的值就表示的召回率漏检率=1-Recall=0.4

类别 D 00 的召回率 = R e c a l l ( T P R ) = T P T P + F N = T P P = 0.60 0.60 + 0.01 + 0.39 = 0.6 类别 D 00 的漏检率 = F N R = F N T P + F N = F N P = 0.01 + 0.39 0.60 + 0.01 + 0.39 = 0.4 = 1 − R e c a l l 类别D_{00}的召回率=Recall(TPR) = \frac{TP}{TP + FN}=\frac{TP}{P}=\frac{0.60}{0.60+0.01+0.39}=0.6\\ 类别D_{00}的漏检率= FNR=\frac{FN}{TP+FN}=\frac{FN}{P}=\frac{0.01+0.39}{0.60+0.01+0.39}=0.4=1-Recall 类别D00的召回率=Recall(TPR)=TP+FNTP=PTP=0.60+0.01+0.390.60=0.6类别D00的漏检率=FNR=TP+FNFN=PFN=0.60+0.01+0.390.01+0.39=0.4=1Recall

以D00类别来看:

  • 除了对角线上的那个值以外,反映的是漏检率(漏检成了其他的类别)
  • 除了对角线上的那个值以外,反映的是误检率(误检成了其他的类别)

例如第1列第3行的值0.01表示:漏检D00且认为是D20的概率是0.01
第2列第1行的值0.01表示:误检D00且认为是D10的概率是0.01

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/179889.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

唯创知音WT588F02A-16S录音语音芯片在宠物喂食器中的应用:小芯片,大功能

在现代社会中,宠物已经成为人们生活中的一部分,而宠物喂食器作为宠物养护的重要工具,也越来越受到人们的关注。为了满足人们对宠物喂食器的多样化需求,唯创知音的WT588F02A-16S录音芯片在其中发挥着重要作用。 唯创知音的WT588F0…

.net7.0中把exe和dll分开打包

之前写过 C#把dll分别放在指定的文件夹_wpf core dll 放文件夹-CSDN博客 C#把dll打包到exe_c# 打包exe_故里2130的博客-CSDN博客 这都是老技术了,可以进行参考。 现在的.netcore系列有单独支持把exe和dll分开打包的功能了,当然也支持.net7.0和.net8.…

戴西软件成功收购美国知名 CAE 软件公司 ETA 的VPG汽车仿真软件

戴西(上海)软件有限公司(以下简称“戴西”)荣幸宣布成功收购全球著名CAE软件开发商ETA公司(Engineering Technology Associates, Inc.)旗下的汽车碰撞安全仿真软件VPG及相关技术成果(Virtual Pr…

Python与设计模式--备忘录模式

23种计模式之 前言 (5)单例模式、工厂模式、简单工厂模式、抽象工厂模式、建造者模式、原型模式、(7)代理模式、装饰器模式、适配器模式、门面模式、组合模式、享元模式、桥梁模式、(11)策略模式、责任链模式、命令模式、中介者模…

Phpstudy v8.0/8.1小皮升级Apache至最新,同时升级openssl版本httpd-2.4.58 apache 2.4.58

1.apache官网下载最新版本的apache 2.4.58 2.phpstudy下apache停止运行,把原来的Apache文件夹备份一份 复制图中的文件替换apache目录下文件 3.phpstudy中开启apache

PyTorch:模型加载方法详解

PyTorch模型加载方法汇总 随着深度学习的快速发展,PyTorch作为一种流行的深度学习框架,其模型加载方法也备受关注。本文将介绍常用的PyTorch模型加载方法,并汇总不同方法的关键点,帮助读者更好地理解和应用。 一、PyTorch模型加载…

Ps:子路径的上下排列以及对齐与分布

不论是一个形状图层(或图层的矢量蒙版)上的多个形状还是同一路径层上多个路径,只要对应“路径”面板的一个路径层,可以将这些路径称为该路径层的“子路径”,也称为“组件”。 当一个路径层上有两个以上的子路径时&…

Python与设计模式--中介者模式

23种计模式之 前言 (5)单例模式、工厂模式、简单工厂模式、抽象工厂模式、建造者模式、原型模式、(7)代理模式、装饰器模式、适配器模式、门面模式、组合模式、享元模式、桥梁模式、(11)策略模式、责任链模式、命令模式、中介者模…

uniapp微信小程序中阻止事件冒泡

开发场景:列表中展示地块的数据信息,用户可以点击列表进入地块的详情界面,也可以点击列表中的星星按钮进行收藏 遇到的问题:每次点击星星的时候,都会触发父级的点击事件,从而进入到详情界面 原本的代码&am…

docker镜像管理命令

镜像管理命令 docker build : 命令用于使用 Dockerfile 创建镜像 docker build [OPTIONS] PATH | URL | - OPTIONS说明: --add-host :向hosts文件中添加自定义 host:ip 映射 --build-arg[] :设置镜像创建时的变量; --cache-from :指定镜像用作当前构建…

STK Components 二次开发- 卫星地面站

前期卫星地面站创建已经说过,本次说一下卫星和地面站可见性时卫星名称和轨迹线变色问题。 1.创建卫星 // Get the current TLE for the given satellite identifier. var tleList TwoLineElementSetHelper.GetTles(m_satelliteIdentifier, JulianDate.Now);// Us…

MFC容器中使用标准库容器,内存违规

问题描述 CArray中元素不管是直接或间接使用标准库容器&#xff0c;会引发内存违规。与CArray内部实现有关。测试代码如下&#xff1a; struct tagData {std::vector<int> m_Values; }; CArray<tagData, tagData> mIntVecArray; {tagData mData;mData.m_Values.p…

类和对象——(2)类

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 只虽然夜晚很长&#xff0c;但天…

SpringBoot配置跨域的机种方式 spring跨域的几种方式

SpringBoot配置跨域的机种方式 spring跨域的几种方式 1、注解方式2、实现 WebMvcConfigurer 接口3、使用 FilterRegistrationBean 过滤器 (推荐) 1、注解方式 使用 CrossOrigin注解标注在 Controller或者 Mapping RestController CrossOrigin RequestMapping("/ctro&quo…

Spark_Spark高阶特性

wscg filter导致断链 Codegen 向量化 simdjson Orc Parquet 支持批量读取 spark本身对parquet支持比较好&#xff0c;因为parquet

“PredictingChildrenHeight“ app Tech Support(URL)

Using our app, we can predict a childs height through formulas. Because there are many factors that affect a childs height, it is for reference only. ​​​​​​​ If you have any questions, you can either leave a message or send the questions to our em…

msng病毒分析

这是一个非常古老的文件夹病毒&#xff0c;使用XP系统的文件夹图标&#xff0c;采用VB语言开发&#xff0c;使用了一种自定义的壳来保护&#xff0c;会打开网址http://www.OpenClose.ir,通过软盘、U盘和共享目录进行传播&#xff0c;会在U盘所有的目录下生成自身的副本&#xf…

mysql使用--备份与恢复

1.mysqldump 1.1.使用mysqldump备份数据 1.1.1.备份指定数据库中的指定表 如&#xff1a;mysqldump [其他选项] 数据库名 [表1名 表2名 …] 如&#xff1a;mysqldump -uroot -hlocalhost -p1234 database1 student_score > student_score.sql 上述采用-u和-p完成用户登录&am…

Linux常用命令----shutdown命令

文章目录 命令概述参数解释使用示例及解释 命令概述 shutdown 命令用于安全地关闭或重启 Linux 系统。它允许管理员指定一个时间点执行操作&#xff0c;并可发送警告信息给所有登录的用户。 参数解释 时间参数 ([时间]): now: 立即执行关闭或重启操作。m: 在 m 分钟后执行操作…

Android控件全解手册 - 任意View缩放平移工具-实现思路和讲解

Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列ChatGPT和AIGC &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分…