【状态估计】基于卡尔曼滤波器和扩展卡尔曼滤波器用于 INS/GNSS 导航、目标跟踪和地形参考导航研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

 2.1 算例1

2.2 算例2 

2.3 算例3

🎉3 参考文献

🌈4 Matlab代码及数据


💥1 概述

EKF 是卡尔曼滤波器在非线性系统中的应用的推广延伸,其离散非线性系统的状态和测量方程表示为:

EKF 原理如图 1 所示。

EKF 主要包含时间更新(预测)与测量更新(校正)两个阶段。 时间更新包含以下部分:

 

卡尔曼滤波器法原理由射影定理推导而来,能在线性高斯模型的情况下对目标状态做出最优估计,但实际系统多为非线性系统[83]。为解决非线性系统滤波问题,常用处理方法是将其看作一个近似的线性滤波问题。目前应用较多的是 EKF,其核心思想是在滤波值处将非线性函数和进行一阶泰勒级数展开,并忽略其高阶项,得到局部线性化模型,然后再应用 KF 进行滤波估计。

📚2 运行结果

 2.1 算例1

 

 

2.2 算例2 

 

2.3 算例3

 

 

部分代码:

N = 20; % number of time steps
dt = 1; % time between time steps
M = 100; % number of Monte-Carlo runs

sig_acc_true = [0.3; 0.3; 0.3]; % true value of standard deviation of accelerometer noise
sig_gps_true = [3; 3; 3; 0.03; 0.03; 0.03]; % true value of standard deviation of GPS noise

sig_acc = [0.3; 0.3; 0.3]; % user input of standard deviation of accelerometer noise
sig_gps = [3; 3; 3; 0.03; 0.03; 0.03]; % user input of standard deviation of GPS noise

Q = [diag(0.25*dt^4*sig_acc.^2), zeros(3); zeros(3), diag(dt^2*sig_acc.^2)]; % process noise covariance matrix
R = [diag(sig_gps(1:3).^2), zeros(3); zeros(3), diag(sig_gps(4:6).^2)]; % measurement noise covariance matrix

F = [eye(3), eye(3)*dt; zeros(3), eye(3)]; % state transition matrix
B = [0.5*eye(3)*dt^2; eye(3)*dt]; % control-input matrix
H = eye(6); % measurement matrix


%% true trajectory

x_true = zeros(6,N+1); % true state
a_true = zeros(3,N);   % true acceleration

x_true(:,1) = [0; 0; 0; 5; 5; 0]; % initial true state
for k = 2:1:N+1
    x_true(:,k) = F*x_true(:,k-1) + B*a_true(:,k-1);
end

%% Kalman filter simulation

res_x_est = zeros(6,N+1,M); % Monte-Carlo estimates
res_x_err = zeros(6,N+1,M); % Monte-Carlo estimate errors
P_diag = zeros(6,N+1); % diagonal term of error covariance matrix

% filtering
for m = 1:1:M
    % initial guess
    x_est(:,1) = [2; -2; 0; 5; 5.1; 0.1];
    P = [eye(3)*4^2, zeros(3); zeros(3), eye(3)*0.4^2];
    P_diag(:,1) = diag(P);
    for k = 2:1:N+1
        
        %%% Prediction
        % obtain acceleration output
        u = a_true(:,k-1) + normrnd(0, sig_acc_true);
        
        % predicted state estimate
        x_est(:,k) = F*x_est(:,k-1) + B*u;
        
        % predicted error covariance
        P = F*P*F' + Q;
        
        %%% Update
        % obtain measurement
        z = x_true(:,k) + normrnd(0, sig_gps_true);
        
        % measurement residual

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]彭剑,刘东文.改进扩展卡尔曼滤波器的PMSM参数辨识[J].现代信息科技,2023,7(10):66-69.DOI:10.19850/j.cnki.2096-4706.2023.10.017.

[2]廖楷娴. 改进扩展卡尔曼滤波器的永磁同步风力发电机参数辨识[D].湖南工业大学,2022.DOI:10.27730/d.cnki.ghngy.2022.000263.

🌈4 Matlab代码及数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1792.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深入探究人工智能】:历史、应用、技术与未来

深入探究人工智能 前言人工智能的历史人工智能的应用人工智能的技术人工智能的未来当代的人工智能产物结语🍀小结🍀 🎉博客主页:小智_x0___0x_ 🎉欢迎关注:👍点赞🙌收藏✍️留言 &am…

LangChain大型语言模型(LLM)应用开发(三):Chains

LangChain是一个基于大语言模型(如ChatGPT)用于构建端到端语言模型应用的 Python 框架。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互&#x…

【UE4 塔防游戏系列】10-防御塔升级

目录 效果 步骤 一、根据防御塔等级修改子弹伤害 二、根据防御塔等级修改子弹速度 三、根据防御塔等级修改检测半径 四、根据防御塔等级修改子弹颜色 五、根据防御塔等级修改换弹时间 效果 步骤 一、根据防御塔等级修改子弹伤害 1. 打开“TowerBaseBullet_Child”&…

【ArcGIS Pro二次开发】(48):三调土地利用现状分类面积汇总统计

之前做了一个三调三大类面积统计,有小伙伴反映太粗糙,想要一个完整的地类面积汇总表。 【ArcGIS Pro二次开发】(35):三调三大类面积统计 本质上并没有多少难度,之前也做过类似的用地用海汇总表,于是拿出来改一改就好了…

window 命令笔记

1.查看端口 输入“netstat -ano”并回车可以获得所有网络连接活动的列表,在表中,本地地址IP地址后方冒号之后的即是端口号: 如果想要查找特定的端口可以输入命令“netstat -aon|findstr “端口号””,例如“netstat -aon|findstr…

My_window类(带有next和quit按钮)

运行代码: //My_window类(带有next和quit按钮) #include"std_lib_facilities.h" #include"GUI/Simple_window.h" #include"GUI/GUI.h" #include"GUI/Graph.h" #include"GUI/Point.h"//--…

C++基础算法离散化及区间合并篇

📟作者主页:慢热的陕西人 🌴专栏链接:C算法 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 主要讲解了双指针,位运算,离散化以及区间合并。…

有效的括号(C)

bool isValid(char* s) {ST st;StackInit(&st);while (*s) //遍历 -- 与\0终止{//是左括号 压栈if (*s ( || *s [ *s {){StackPush(&st, *s);s;}else{//应对样例: ’]if (StackEmpty(&st)){StackDestroy(&st);return false;}//不是左括号 应该就…

Spark MLlib快速入门(1)逻辑回归、Kmeans、决策树、Pipeline、交叉验证

Spark MLlib快速入门(1)逻辑回归、Kmeans、决策树案例 除了scikit-learn外,在spark中也提供了机器学习库,即Spark MLlib。 在Spark MLlib机器学习库提供两套算法实现的API:基于RDD API和基于DataFrame API。今天,主要介绍下Data…

docker k8s

Docker docker到底与一般的虚拟机有什么不同呢? 我们知道一般的linux系统即GNU/Linux系统包括两个部分,linux系统内核GNU提供的大量自由软件,而centos就是众多GNU/Linux系统中的一个。 虚拟机会在宿主机上虚拟出一个完整的操作系统与宿主机完…

在 3ds Max 中对链模型进行摆放姿势处理

推荐: NSDT场景编辑器助你快速搭建可二次开发的3D应用场景 建模和“摆姿势”3D链可能看起来是一项繁琐的工作,但实际上可以通过使用阵列工具并将链中的链接视为骨骼来轻松完成。在本教程中,我将向您展示如何对链条进行建模,并通过…

oled拼接屏在柳州的户外广告中有哪些应用展现?

柳州oled拼接屏是一种高端的显示屏,它采用了OLED技术,具有高亮度、高对比度、高色彩饱和度、高刷新率等优点,能够呈现出更加真实、清晰、细腻的图像效果。 同时,柳州oled拼接屏还具有拼接功能,可以将多个屏幕拼接在一…

vue element select下拉框回显展示数字

vue element select下拉框回显展示数字 问题截图&#xff1a; 下拉框显示数字可以从数据类型来分析错误&#xff0c;接收的数据类型是字符串&#xff0c;但是value是数字类型 <el-form-item prop"classifyLabelId" :label"$t(item.classifyLabelId)"…

GUI-Menu菜单实例

运行代码&#xff1a; //GUI-Menu菜单实例 #include"std_lib_facilities.h" #include"GUI/Simple_window.h" #include"GUI/GUI.h" #include"GUI/Graph.h" #include"GUI/Point.h"struct Lines_window :Window {Lines_window…

常见的网络攻击

​ 1.僵木蠕毒 攻击业内习惯把僵尸网络、木马、蠕虫、感染型病毒合称为僵木蠕毒。从攻击路径来看&#xff0c;蠕虫和感染型病毒通过自身的能力进行主动传播&#xff0c;木马则需要渠道来进行投放&#xff0c;而由后门木马&#xff08;部分具备蠕虫或感染传播能力&#xff09;构…

Mybatis架构简介

文章目录 1.整体架构图2. 基础支撑层2.1 类型转换模块2.2 日志模块2.3 反射工具模块2.4 Binding 模块2.5 数据源模块2.6缓存模块2.7 解析器模块2.8 事务管理模块3. 核心处理层3.1 配置解析3.2 SQL 解析与 scripting 模块3.3 SQL 执行3.4 插件4. 接口层1.整体架构图 MyBatis 分…

智能优化算法——灰狼优化算法(PythonMatlab实现)

目录 1 灰狼优化算法基本思想 2 灰狼捕食猎物过程 2.1 社会等级分层 2.2 包围猎物 2.3 狩猎 2.4 攻击猎物 2.5 寻找猎物 3 实现步骤及程序框图 3.1 步骤 3.2 程序框图 4 Python代码实现 5 Matlab实现 1 灰狼优化算法基本思想 灰狼优化算法是一种群智能优化算法&#xff0c;它的…

java版工程项目管理系统 Spring Cloud+Spring Boot+Mybatis+Vue+ElementUI+前后端分离 功能清单

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目显示…

cocos creator Richtext点击事件

组件如图 添加ts自定义脚本&#xff0c;定义onClickFunc点击方法&#xff1a; import { Component, _decorator} from "cc";const { ccclass } _decorator; ccclass(RichTextComponent) export class RichTextComponent extends Component{public onClickFunc(even…

C++入门学习(2)

思维导图&#xff1a; 一&#xff0c;缺省参数 如何理解缺省参数呢&#xff1f;简单来说&#xff0c;缺省参数就是一个会找备胎的参数&#xff01;为什么这样子说呢&#xff1f;来看一个缺省参数就知道了&#xff01;代码如下&#xff1a; #include<iostream> using std…