EasyExcel实现Excel百万级数据导入导出

1.1 模拟500w数据导出
需求:使用EasyExcel完成500w数据的导出。

500w数据的导出解决思路:

首先在查询数据库层面,需要分批进行查询(比如每次查询20w)
每查询一次结束,就使用EasyExcel工具将这些数据写入一次;
当一个Sheet写满了100w条数据,开始将查询的数据写入到另一个Sheet中;
如此循环直到数据全部导出到Excel完毕。
我们需要计算Sheet个数,以及循环写入次数。特别是最后一个Sheet的写入次数

其实查询数据库多少次就是写入多少次

准备工作
1.基于maven搭建springboot工程,引入easyexcel依赖,这里我用的是3.0版本

<dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.0.5</version>
</dependency>
2.创建海量数据的sql脚本CREATE TABLE dept( /*部门表*/
deptno MEDIUMINT   UNSIGNED  NOT NULL  DEFAULT 0,
dname VARCHAR(20)  NOT NULL  DEFAULT "",
loc VARCHAR(13) NOT NULL DEFAULT ""
) ;#创建表EMP雇员
CREATE TABLE emp
(empno  MEDIUMINT UNSIGNED  NOT NULL  DEFAULT 0, /*编号*/
ename VARCHAR(20) NOT NULL DEFAULT "", /*名字*/
job VARCHAR(9) NOT NULL DEFAULT "",/*工作*/
mgr MEDIUMINT UNSIGNED NOT NULL DEFAULT 0,/*上级编号*/
hiredate DATE NOT NULL,/*入职时间*/
sal DECIMAL(7,2)  NOT NULL,/*薪水*/
comm DECIMAL(7,2) NOT NULL,/*红利*/
deptno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0 /*部门编号*/
) ;#工资级别表
CREATE TABLE salgrade
(
grade MEDIUMINT UNSIGNED NOT NULL DEFAULT 0,
losal DECIMAL(17,2)  NOT NULL,
hisal DECIMAL(17,2)  NOT NULL
);#测试数据
INSERT INTO salgrade VALUES (1,700,1200);
INSERT INTO salgrade VALUES (2,1201,1400);
INSERT INTO salgrade VALUES (3,1401,2000);
INSERT INTO salgrade VALUES (4,2001,3000);
INSERT INTO salgrade VALUES (5,3001,9999);delimiter $$#创建一个函数,名字 rand_string,可以随机返回我指定的个数字符串
create function rand_string(n INT)
returns varchar(255) #该函数会返回一个字符串
begin
#定义了一个变量 chars_str, 类型  varchar(100)
#默认给 chars_str 初始值   'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ'declare chars_str varchar(100) default'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ'; declare return_str varchar(255) default '';declare i int default 0; while i < n do# concat 函数 : 连接函数mysql函数set return_str =concat(return_str,substring(chars_str,floor(1+rand()*52),1));set i = i + 1;end while;return return_str;end $$#这里我们又自定了一个函数,返回一个随机的部门号
create function rand_num( )
returns int(5)
begin
declare i int default 0;
set i = floor(10+rand()*500);
return i;
end $$#创建一个存储过程, 可以添加雇员
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
#set autocommit =0 把autocommit设置成0#autocommit = 0 含义: 不要自动提交set autocommit = 0; #默认不提交sql语句repeatset i = i + 1;#通过前面写的函数随机产生字符串和部门编号,然后加入到emp表insert into emp values ((start+i) ,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());until i = max_numend repeat;#commit整体提交所有sql语句,提高效率commit;end $$#添加8000000数据
call insert_emp(100001,8000000)$$#命令结束符,再重新设置为;
delimiter ;

3.实体类

@Data
@NoArgsConstructor
@AllArgsConstructor
public class Emp implements Serializable {@ExcelProperty(value = "员工编号")private Integer empno;@ExcelProperty(value = "员工名称")private String ename;@ExcelProperty(value = "工作")private String job;@ExcelProperty(value = "主管编号")private Integer mgr;@ExcelProperty(value = "入职日期")private Date hiredate;@ExcelProperty(value = "薪资")private BigDecimal sal;@ExcelProperty(value = "奖金")private BigDecimal comm;@ExcelProperty(value = "所属部门")private Integer deptno;}

4.vo类

@Data
public class EmpVo {@ExcelProperty(value = "员工编号")private Integer empno;@ExcelProperty(value = "员工名称")private String ename;@ExcelProperty(value = "工作")private String job;@ExcelProperty(value = "主管编号")private Integer mgr;@ExcelProperty(value = "入职日期")private Date hiredate;@ExcelProperty(value = "薪资")private BigDecimal sal;@ExcelProperty(value = "奖金")private BigDecimal comm;@ExcelProperty(value = "所属部门")private Integer deptno;}

导出核心代码

@Resource
private EmpService empService;
/*** 分批次导出*/
@GetMapping("/export")
public void export() throws IOException {StopWatch stopWatch = new StopWatch();stopWatch.start();empService.export();stopWatch.stop();System.out.println("共计耗时: " + stopWatch.getTotalTimeSeconds()+"S");
}
public class ExcelConstants {//一个sheet装100w数据public static final Integer PER_SHEET_ROW_COUNT = 1000000;//每次查询20w数据,每次写入20w数据public static final Integer PER_WRITE_ROW_COUNT = 200000;
}
@Override
public void export() throws IOException {OutputStream outputStream =null;try {//记录总数:实际中需要根据查询条件进行统计即可//LambdaQueryWrapper<Emp> lambdaQueryWrapper = new QueryWrapper<Emp>().lambda().eq(Emp::getEmpno, 1000001);Integer totalCount = empMapper.selectCount(null);//每一个Sheet存放100w条数据Integer sheetDataRows = ExcelConstants.PER_SHEET_ROW_COUNT;//每次写入的数据量20w,每页查询20WInteger writeDataRows = ExcelConstants.PER_WRITE_ROW_COUNT;//计算需要的Sheet数量Integer sheetNum = totalCount % sheetDataRows == 0 ? (totalCount / sheetDataRows) : (totalCount / sheetDataRows + 1);//计算一般情况下每一个Sheet需要写入的次数(一般情况不包含最后一个sheet,因为最后一个sheet不确定会写入多少条数据)Integer oneSheetWriteCount = sheetDataRows / writeDataRows;//计算最后一个sheet需要写入的次数Integer lastSheetWriteCount = totalCount % sheetDataRows == 0 ? oneSheetWriteCount : (totalCount % sheetDataRows % writeDataRows == 0 ? (totalCount / sheetDataRows / writeDataRows) : (totalCount / sheetDataRows / writeDataRows + 1));ServletRequestAttributes requestAttributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();HttpServletResponse response = requestAttributes.getResponse();outputStream = response.getOutputStream();//必须放到循环外,否则会刷新流ExcelWriter excelWriter = EasyExcel.write(outputStream).build();//开始分批查询分次写入for (int i = 0; i < sheetNum; i++) {//创建SheetWriteSheet sheet = new WriteSheet();sheet.setSheetName("测试Sheet1"+i);sheet.setSheetNo(i);//循环写入次数: j的自增条件是当不是最后一个Sheet的时候写入次数为正常的每个Sheet写入的次数,如果是最后一个就需要使用计算的次数lastSheetWriteCountfor (int j = 0; j < (i != sheetNum - 1 ? oneSheetWriteCount : lastSheetWriteCount); j++) {//分页查询一次20wPage<Emp> page = empMapper.selectPage(new Page(j + 1 + oneSheetWriteCount * i, writeDataRows), null);List<Emp> empList = page.getRecords();List<EmpVo> empVoList = new ArrayList<>();for (Emp emp : empList) {EmpVo empVo = new EmpVo();BeanUtils.copyProperties(emp, empVo);empVoList.add(empVo);}WriteSheet writeSheet = EasyExcel.writerSheet(i, "员工信息" + (i + 1)).head(EmpVo.class).registerWriteHandler(new LongestMatchColumnWidthStyleStrategy()).build();//写数据excelWriter.write(empVoList, writeSheet);}}// 下载EXCELresponse.setContentType("application/vnd.openxmlformats-officedocument.spreadsheetml.sheet");response.setCharacterEncoding("utf-8");// 这里URLEncoder.encode可以防止浏览器端导出excel文件名中文乱码 当然和easyexcel没有关系String fileName = URLEncoder.encode("员工信息", "UTF-8").replaceAll("\\+", "%20");response.setHeader("Content-disposition", "attachment;filename*=utf-8''" + fileName + ".xlsx");excelWriter.finish();outputStream.flush();} catch (IOException e) {e.printStackTrace();} catch (BeansException e) {e.printStackTrace();}finally {if (outputStream != null) {outputStream.close();}}
}

导出500w数据共计耗时,可以看到差不多400s左右。
在这里插入图片描述
看下导出效果,脚本插入了500w数据,100w一个sheet因此正好五个
在这里插入图片描述
在这里插入图片描述
1.2模拟500w数据导入
500W数据的导入解决思路

1、首先是分批读取Excel中的500w数据,这一点EasyExcel有自己的解决方案,我们可以参考Demo即可,只需要把它分批的参数5000调大即可。

2、其次就是往DB里插入,怎么去插入这20w条数据,当然不能一条一条的循环,应该批量插入这20w条数据,同样也不能使用Mybatis的批量插入,因为效率也低。

3、使用JDBC+事务的批量操作将数据插入到数据库。(分批读取+JDBC分批插入+手动事务控制)

代码实现

controller层测试接口

// 事件监听
public class EasyExceGeneralDatalListener extends AnalysisEventListener<Map<Integer, String>> {/*** 处理业务逻辑的Service,也可以是Mapper*/private EmpService empService;/*** 用于存储读取的数据*/private List<Map<Integer, String>> dataList = new ArrayList<Map<Integer, String>>();public EasyExceGeneralDatalListener() {}public EasyExceGeneralDatalListener(EmpService empService) {this.empService = empService;}@Overridepublic void invoke(Map<Integer, String> data, AnalysisContext context) {//数据add进入集合dataList.add(data);//size是否为100000条:这里其实就是分批.当数据等于10w的时候执行一次插入if (dataList.size() >= ExcelConstants.GENERAL_ONCE_SAVE_TO_DB_ROWS) {//存入数据库:数据小于1w条使用Mybatis的批量插入即可;saveData();//清理集合便于GC回收dataList.clear();}}/*** 保存数据到DB** @param* @MethodName: saveData* @return: void*/private void saveData() {empService.importData(dataList);dataList.clear();}/*** Excel中所有数据解析完毕会调用此方法** @param: context* @MethodName: doAfterAllAnalysed* @return: void*/@Overridepublic void doAfterAllAnalysed(AnalysisContext context) {saveData();dataList.clear();}
}

核心业务代码

public interface EmpService {void export() throws IOException;void importData(List<Map<Integer, String>> dataList);}
 /** 测试用Excel导入超过10w条数据,经过测试发现,使用Mybatis的批量插入速度非常慢,所以这里可以使用 数据分批+JDBC分批插入+事务来继续插入速度会非常快*/@Overridepublic void importData(List<Map<Integer, String>> dataList) {//结果集中数据为0时,结束方法.进行下一次调用if (dataList.size() == 0) {return;}//JDBC分批插入+事务操作完成对20w数据的插入Connection conn = null;PreparedStatement ps = null;try {long startTime = System.currentTimeMillis();System.out.println(dataList.size() + "条,开始导入到数据库时间:" + startTime + "ms");conn = JDBCDruidUtils.getConnection();//控制事务:默认不提交conn.setAutoCommit(false);String sql = "insert into emp (`empno`, `ename`, `job`, `mgr`, `hiredate`, `sal`, `comm`, `deptno`) values";sql += "(?,?,?,?,?,?,?,?)";ps = conn.prepareStatement(sql);//循环结果集:这里循环不支持lambda表达式for (int i = 0; i < dataList.size(); i++) {Map<Integer, String> item = dataList.get(i);ps.setString(1, item.get(0));ps.setString(2, item.get(1));ps.setString(3, item.get(2));ps.setString(4, item.get(3));ps.setString(5, item.get(4));ps.setString(6, item.get(5));ps.setString(7, item.get(6));ps.setString(8, item.get(7));//将一组参数添加到此 PreparedStatement 对象的批处理命令中。ps.addBatch();}//执行批处理ps.executeBatch();//手动提交事务conn.commit();long endTime = System.currentTimeMillis();System.out.println(dataList.size() + "条,结束导入到数据库时间:" + endTime + "ms");System.out.println(dataList.size() + "条,导入用时:" + (endTime - startTime) + "ms");} catch (Exception e) {e.printStackTrace();} finally {//关连接JDBCDruidUtils.close(conn, ps);}}}

jdbc工具类

//JDBC工具类
public class JDBCDruidUtils {private static DataSource dataSource;/*创建数据Properties集合对象加载加载配置文件*/static {Properties pro = new Properties();//加载数据库连接池对象try {//获取数据库连接池对象pro.load(JDBCDruidUtils.class.getClassLoader().getResourceAsStream("druid.properties"));dataSource = DruidDataSourceFactory.createDataSource(pro);} catch (Exception e) {e.printStackTrace();}}/*获取连接*/public static Connection getConnection() throws SQLException {return dataSource.getConnection();}/*** 关闭conn,和 statement独对象资源** @param connection* @param statement* @MethodName: close* @return: void*/public static void close(Connection connection, Statement statement) {if (connection != null) {try {connection.close();} catch (SQLException e) {e.printStackTrace();}}if (statement != null) {try {statement.close();} catch (SQLException e) {e.printStackTrace();}}}/*** 关闭 conn , statement 和resultset三个对象资源** @param connection* @param statement* @param resultSet* @MethodName: close* @return: void*/public static void close(Connection connection, Statement statement, ResultSet resultSet) {close(connection, statement);if (resultSet != null) {try {resultSet.close();} catch (SQLException e) {e.printStackTrace();}}}/*获取连接池对象*/public static DataSource getDataSource() {return dataSource;}}

druid.properties配置文件

这里我将文件创建在类路径下,需要注意的是连接mysql数据库时需要指定rewriteBatchedStatements=true批处理才会生效,否则还是逐条插入效率较低,allowMultiQueries=true表示可以使sql语句中有多个insert或者update语句(语句之间携带分号),这里可以忽略。

# druid.properties配置
driverClassName=com.mysql.jdbc.Driver
url=jdbc:mysql://localhost:3306/llp?autoReconnect=true&useUnicode=true&useSSL=false&serverTimezone=GMT%2B8&allowMultiQueries=true&rewriteBatchedStatements=true
username=root
password=root
initialSize=10
maxActive=50
maxWait=60000

测试结果

------开始读取ExcelSheet时间(包括导入数据过程):1674181403555ms------
200000,开始导入到数据库时间:1674181409740ms
2023-01-20 10:23:29.943  INFO 18580 --- [nio-8888-exec-1] com.alibaba.druid.pool.DruidDataSource   : {dataSource-1} inited
200000,结束导入到数据库时间:1674181413252ms
200000,导入用时:3512ms
200000,开始导入到数据库时间:1674181418422ms
200000,结束导入到数据库时间:1674181420999ms
200000,导入用时:2577ms
.....
200000,开始导入到数据库时间:1674181607405ms
200000,结束导入到数据库时间:1674181610154ms
200000,导入用时:2749ms
------结束读取ExcelSheet时间(包括导入数据过程):1674181610155ms------
------读取ExcelSheet时间(包括导入数据)共计耗时:206600ms------

总结

1.如此大批量数据的导出和导入操作,会占用大量的内存实际开发中还应限制操作人数。

2.在做大批量的数据导入时,可以使用jdbc手动开启事务,批量提交。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/177399.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SpringBoot篇】使用Spring Cache高效处理缓存数据

文章目录 &#x1f339;简述Spring Cache&#x1f3f3;️‍&#x1f308;常用注解&#x1f33a;使用SpringCache&#x1f6f8;Cacheable注解⭐测试 &#x1f6f8;CacheEvict&#x1f38d;一次清理一条数据&#x1f38d;一次删除多条数据 Spring Cache是一个框架,只要简单加一个…

宠物网站的技术 SEO:完整指南

您是宠物行业网站的从业者吗&#xff1f;那么您一定知道&#xff0c;当人们寻找与宠物相关的资源时&#xff0c;在搜索引擎结果中排名靠前有多么重要。 这就是技术SEO的用武之地&#xff01;它正在调整您网站的后端代码和服务器配置&#xff0c;以在 SERP 中排名更高。 在此&…

redis的集群,主从复制,哨兵

redis的高可用 在Redis中&#xff0c;实现高可用的技术主要包括持久化、主从复制、哨兵和集群&#xff0c;下面分别说明它们的作用&#xff0c;以及解决了什么样的问题。 持久化&#xff1a; 持久化是最简单的高可用方法&#xff08;有时甚至不被归为高可用的手段&#xff09;…

splice()方法

splice(index,len,item)是vue中数组变异的方法之一&#xff0c;可以用来删除&#xff0c;更新&#xff0c;和增加数组内容参数: index&#xff1a;数组下标 len&#xff1a;替换/删除的长度 item&#xff1a;更新或增加的内容使用方法&#xff1a; 1、删除&#xff0c;当参数形…

SQL优化的总结

1. 编写高效的 SQL 语句 1.1 合理使用索引 - **索引类型&#xff1a;** 解释不同类型的索引&#xff08;B-Tree、哈希索引等&#xff09;的作用和适用场景。 - **选择和创建索引&#xff1a;** 根据查询需求和数据分布选择合适的列创建索引&#xff0c;避免过多或不必要的索…

2019年9月26日: Go生态洞察:发布Go模块

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

如何保护 API 安全

为了收集有关 API 管理当前和未来状态的见解&#xff0c;我们邀请来自 18 家公司的 IT 专业人士分享他们的想法。我们问他们&#xff1a;“哪些技术和工具对于保护 API 最有效&#xff1f;” 他们告诉我们的是&#xff1a; 验证 我们经常向已知的 B2B 合作伙伴提供 API 访问权…

JavaScript创建枚举

相比直接写数字与字符串值&#xff0c;用枚举表示预定义范围的常量值有很多优点&#xff0c;这里就不做赘述了&#xff0c;但目前为止javascript并没有提供原生的enum类型&#xff08;typescript当然就支持&#xff09;&#xff0c;通常javascript会借助对象类型来等效实现enum…

lightdb substr函数支持浮点类型

背景 在信创适配中&#xff0c;从ORACLE迁移过来的程序使用了substr函数。 LightDB 23.4版本对该函数进行了增强。支持位置参数和长度参数使用number类型。 示例 使用substr(text, numeric, numeric)函数 declareline varchar(300) : 312456789009876543001000.00;acct va…

mac解压gz文件

我发现一个问题&#xff0c;比如我从GSE144136里下载的文件 这个结果是这样的&#xff0c;直接双击是没有用的 因此需要使用命令行 gzip -d GSE144136_GeneNames.csv.gz

猜数字游戏

需求目标 这个游戏窗口要求玩家猜一个1到100之间的数字。玩家可以在文本框中输入自己的猜测&#xff0c;并点击提交按钮进行验证。游戏会给出相应的提示&#xff0c;直到玩家猜中正确的数字为止。 效果 源码 /*** author lwh* date 2023/11/28* description 猜数字游戏**/ i…

基于springboot房地产项目设计流程管理系统

一、需求描述 该项目针对某房地产效果图公司的项目流程进行信息化管理。其目标是使得该公司的管理人员、普通员工、前台、能够对项目、员工&#xff08;包括主管&#xff09;、财务、工作业绩以及客户进行全方位的管理&#xff0c;并在此基础上能够挖掘员工潜力&#xff0c;能够…

C语言——输入 10 个数,分别统计其中正数、负数、零的个数

#include <stdio.h> int main() {int numbers[10]; // 存储输入的10个数int positive_count 0; // 正数计数器int negative_count 0; // 负数计数器int zero_count 0; // 零计数器// 输入10个数printf("请输入10个数&#xff1a;\n");for (int i 0; i …

AMP State Evolution的计算:以伯努利-高斯先验为例

AMP State Evolution (SE)的计算 t 1 t1 t1时&#xff0c; E ( t ) E [ X 2 ] \mathcal E^{(t)} \mathbb E [X^2] E(t)E[X2]&#xff0c;SE的迭代式为 τ r ( t ) σ 2 1 δ E ( t ) E ( t 1 ) E ∣ η ( t ) ( X Z ) − X ∣ 2 , Z ∼ N ( 0 , τ r ( t ) ) \begin{a…

HarmonyOS应用开发者基础认证考试(90分过)

此博文为HarmonyOS应用开发者基础认证考试的最后的大考&#xff0c;要求100分取得90分方可获取证书、现将考试的题库进行分享&#xff0c;希望能帮到大家。但是需要注意的是&#xff0c;题库会不定时的进行题目删减&#xff0c;但是大概的内容是不会进行改变的。真心希望这篇博…

历时三个月,我发布了一款领取外卖红包小程序

近几年&#xff0c;推广外卖红包爆火&#xff0c;各种推广外卖红包的公众号层出不穷。于是&#xff0c;我就在想外卖红包究竟是怎么一回事。就这样&#xff0c;我带着问题开始了关于外卖红包的研究。 在研究的过程中&#xff0c;我开始了解隐藏优惠券、cps等一系列相关的术语。…

9个AI视频后期处理神器——Runway 全功能超详细使用教程(3)

前面2期内容&#xff0c;主要给大家重点介绍了Runway视频生成技术的核心产品功能板块Gen1、Gen2、FI使用教程&#xff0c;还没有看过的小伙伴可以回看往期文章。除了视频生成AI技术外&#xff0c;Runway还具有图片、视频后期处理30多项单个功能&#xff0c;例如视频修复、视频主…

用Elasticsearch搜索匹配功能实现基于地理位置的查询

1.Redis,MongoDB,Elasticsearch实现地理位置查询比较 1.1 Redis: 优点&#xff1a;Redis提供了地理空间索引功能&#xff0c;可以通过Geo数据类型进行地理位置查询。这使得Redis在处理地理位置查询时非常高效。 缺点&#xff1a; Redis的地理空间索引功能相对简单&#xff0…

融云筑基,移动云加速构建高性能智能算力底座

自2022年11月以来&#xff0c;全球大模型数量迅速增加&#xff0c;以ChatGPT为代表的大模型已经成为世界数字科技领域新热点。大模型带来的算力需求迅速增长&#xff0c;未来智算场景将会有非常大的突破空间。 在“十四五”规划的指引下&#xff0c;各地政府积极投入智算中心建…

深度学习-yolo目标检测-机器学习-计算机视觉-python学习路线(呕心沥血出品-绝对精品-附资源链接)

学习路线 1. 计算机视觉基础知识 图像处理基础:了解图像的基本处理技术,如滤波、边缘检测、直方图等。数字图像处理:熟悉数字图像的表示、颜色模型、图像增强等基本概念。opencv课程链接:Python for Computer Vision with OpenCV and Deep Learning资料推荐: 书籍:《数字…