什么是无监督学习

1 概况

1.1 定义

无监督学习(Unsupervised Learning)是机器学习的一种类型,它涉及从未标记的数据中发现隐藏的模式。与监督学习不同,无监督学习的数据没有显式的标签或已知的结果变量。其核心目的是探索数据的内在结构和关系。无监督学习通常用于数据探索、发现洞见以及识别数据中的潜在结构。

1.2 主要类型

1.2.1 聚类(Clustering)

  • 目标:将数据划分为多个群组或簇,使得同一簇内的数据点彼此相似,而不同簇的数据点相异。
  • 应用:市场细分、社交网络分析、图像分割等。
  • 算法示例:K-均值(K-means)、层次聚类(Hierarchical clustering)、DBSCAN等。

1.2.2 降维(Dimensionality Reduction)

  • 目标:减少数据中的变量数量,提取重要特征,同时保留数据的大部分重要信息。
  • 应用:数据可视化、噪声过滤、高效存储等。
  • 算法示例:主成分分析(PCA)、奇异值分解(SVD)、t-SNE等。

1.2.3 关联规则学习(Association Rule Learning)

  • 目标:在大型数据集中发现变量之间的有意义的关系。
  • 应用:市场篮子分析、交叉销售、库存管理等。
  • 算法示例:Apriori、Eclat等。

1.2.4 异常检测(Anomaly Detection)

  • 目标:识别数据集中的异常、奇异或不符合预期的数据点。
  • 应用:欺诈检测、网络安全、故障检测等。
  • 算法示例:基于密度的技术(如DBSCAN)、孤立森林(Isolation Forest)等。

1.2.5 生成模型(Generative Models)

  • 目标:学习数据的分布,以生成新的、与训练数据类似的数据。
  • 应用:数据增强、艺术创作、虚拟现实等。
  • 算法示例:生成对抗网络(GANs)、变分自编码器(VAEs)等。

1.3 实施步骤

无监督学习是机器学习中的一种方法,旨在发现未标记数据的内在结构和模式。无监督学习的实施过程需要对数据有深入的理解,并且对选择的算法进行细致的调整和评估。由于缺乏明确的标签或目标变量,评估和解释模型结果是无监督学习中的关键挑战。成功的无监督学习项目能够揭示数据中的有价值洞见和模式,为决策提供支持。实施无监督学习项目通常包括以下步骤:

1.3.1 问题定义和目标设定

  • 明确目标: 定义无监督学习项目的目标,如数据探索、特征提取、模式识别等。

  • 理解数据: 评估可用数据的质量和特性,确定是否适合无监督学习。

1.3.2 数据收集和整理

  • 收集数据: 根据项目需求收集相关数据。

  • 数据清洗: 处理缺失值、异常值和噪声,确保数据质量。

  • 数据整理: 格式化和标准化数据,以便于处理。

1.3.3 探索性数据分析(EDA)

  • 数据可视化: 使用图表和图形来可视化数据,帮助理解数据结构和分布。

  • 初步分析: 检查数据的统计特性,如均值、方差、分布等。

1.3.4 特征工程

  • 特征选择和提取: 选择或构造对无监督学习任务有帮助的特征。

  • 降维: 如有必要,应用降维技术减少特征数量,例如使用PCA。

1.3.5 选择和应用无监督学习算法

  • 选择算法: 根据问题类型和数据特性选择合适的无监督学习算法,如聚类、降维等。

  • 算法实现: 使用适当的编程语言和工具实现选定的算法。

1.3.6 模型训练和调优

  • 模型训练: 使用选定的无监督学习算法训练模型。

  • 参数调整: 调整模型参数以优化性能和结果。

1.3.7 结果评估和解释

  • 结果评估: 评估无监督学习模型的输出,如聚类质量或降维后的数据表示。

  • 结果解释: 解释和理解模型的发现,确定它们是否符合业务目标和直觉。

1.3.8 应用和迭代

  • 实际应用: 将无监督学习的结果应用于实际问题,如市场细分、异常检测等。

  • 持续迭代: 根据应用结果和反馈,持续优化和调整模型。

2 应用场景

无监督学习是机器学习的一种形式,它旨在从未标记或未分类的数据中发现模式。无监督学习在许多领域都有广泛应用,特别是在数据探索和洞察发现方面。它能够帮助我们理解数据的内在结构,发现数据中隐藏的模式和关系。这种学习方法在多个领域中有着广泛的应用:

2.1 聚类应用

  • 市场细分: 根据客户行为、购买历史或人口统计特征对客户进行分组。

  • 社交网络分析: 识别社交媒体上的社区或群体,根据共同的兴趣或互动进行分组。

  • 生物信息学: 在基因组数据中识别类似模式,帮助理解基因表达。

  • 图像分割: 在数字图像处理中用于将图像分割为多个区域或对象。

2.2 降维应用

  • 特征提取: 减少数据集中的特征数量,提取最重要的特征以简化模型。

  • 数据可视化: 降维至二维或三维空间,帮助可视化和理解高维数据集。

  • 噪声过滤: 通过识别并去除不相关的特征来提高数据质量。

2.3 异常检测

  • 欺诈检测: 在银行和信用卡交易中识别异常模式,用于预防欺诈。

  • 网络安全: 监测网络流量,识别可能的网络攻击,如DDoS或入侵尝试。

  • 系统健康监测: 在工业设备或服务器上监测异常,用于预防故障。

2.4 关联规则学习

  • 购物篮分析: 在零售数据中发现商品之间的关联规则,用于交叉销售和促销活动。

  • 推荐系统: 基于用户的购买或浏览历史推荐相关产品或内容。

2.5 自然语言处理

  • 话题模型: 在文本数据中发现隐藏的话题或模式,用于文档分类或内容推荐。

  • 文本聚类: 自动将相关的文档或文章分组。

2.6 数据探索

  • 探索性数据分析: 在初步分析阶段,用于发现数据集中的模式、趋势和关联。

3 面临的挑战

无监督学习,尽管在揭示数据的隐藏结构和模式方面非常有用,但它也面临着一系列挑战。。有效地克服这些挑战需要深入的数据理解、专业知识以及创新的算法和技术。以下是无监督学习常见的一些挑战:

3.1 数据解释性

  • 结果解释: 由于无监督学习没有预先定义的标签或输出,因此解释模型的结果可能比监督学习更具挑战性。

  • 特征理解: 理解无监督学习模型选取的特征及其在数据集中的作用可能较为复杂。

3.2 性能评估

  • 缺乏明确评估标准: 在无监督学习中,由于缺乏明确的“正确答案”,评估模型性能往往不如监督学习那样直接。

  • 评估方法: 需要开发特定的方法来评估聚类质量、降维的有效性等。

3.3 选择适当的模型

  • 算法选择: 确定哪种无监督学习算法最适合特定的数据集和业务目标可能很具挑战性。

  • 参数调整: 调整和优化模型参数,以获得最佳性能,通常需要大量实验和专业知识。

3.4 数据质量和准备

  • 数据预处理: 无监督学习对数据质量高度敏感。噪声、异常值或不相关的特征可能严重影响结果。

  • 特征工程: 选择和转换正确的特征对于无监督学习的成功至关重要。

3.5 处理高维数据

  • 维度的诅咒: 在高维数据中,寻找有意义的模式可能变得复杂且计算成本高昂。

  • 有效的降维: 需要有效的方法来减少维度,同时保留数据的重要特征。

3.6 超大规模数据集

  • 可扩展性: 处理大规模数据集时,确保算法的可扩展性和效率是一大挑战。

  • 资源限制: 大规模数据处理可能需要昂贵的计算资源。

3.7 多样性和偏差

  • 数据多样性: 确保模型能够处理不同类型和来源的数据。

  • 避免偏差: 无监督学习可能会放大数据中的偏差,特别是在数据表示不平衡时。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/172500.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Less 嵌套规则

文章目录 前言描述style.less输出后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:Sass和Less 🐱‍👓博主在前端领域还有很多知识和技术需要掌握,正在不断努力填补技术短板。(如果出现错误,…

数据库基础教程之创建触发器,实现自动更新时间戳(四)

postgresql 更新时间戳需要通过触发器来实现,这里给出两种方法来实现。 创建字段create_time和edit_time 通过Navicat在添加字段时候将字段设置为timestamp类型,生成时间戳方式为CURRENT_TIMESTAMP或者设置为now(),然后点击保存。 新建函数 点击函数,然后在弹出的函数向导中…

RabbitMQ之MQ的可靠性

文章目录 前言一、数据持久化交换机持久化队列持久化消息持久化 二、LazyQueue控制台配置Lazy模式代码配置Lazy模式更新已有队列为lazy模式 总结 前言 消息到达MQ以后,如果MQ不能及时保存,也会导致消息丢失,所以MQ的可靠性也非常重要。 一、…

将本地项目上传到gitee

本文详细介绍如何将本地项目上传到gitee 1.登录gitee创建一个与本地项目名相同的仓库 2.进入本地项目所在路径,打开Git Bash 3.执行初始化命令 git init4.添加远程仓库 4.1 点击复制你的HTTPS仓库路径 4.2 执行添加远程仓库命令 git remote add origin 你的…

Vue常见的实现tab切换的两种方法

目录 方法一&#xff1a;事件绑定属性绑定 效果图 完整代码 方法二&#xff1a;属性绑定 动态组件 component标签 效果图 完整代码 方法一&#xff1a;事件绑定属性绑定 效果图 完整代码 <!DOCTYPE html> <html lang"en"> <head><meta c…

【中间件】消息队列中间件intro

中间件middleware 内容管理 introwhy use MQMQ实现漫谈主流消息队列QMQ IntroQMQ架构QMQ 存储模型 本文还是从理论层面分析消息队列中间件 cfeng现在处于理论分析阶段&#xff0c;以中间件例子&#xff0c;之前的blog对于中间件是从使用角度分享了相关的用法&#xff0c;现在就…

Vue框架学习笔记-Object.defineproperty函数

文章目录 前文提要Object.defineProperty作用Object.defineProperty参数使用例图getter&#xff0c;也就是get函数setter&#xff0c;也就是set函数 前文提要 本人仅做个人学习记录&#xff0c;如有错误&#xff0c;请多包涵 Object.defineProperty作用 当在js中声明了一个变…

在我国干独立游戏开发有多难?

游戏独立开发在中国&#xff0c;一直以来都是一条充满挑战的道路。尽管有着无限的激情和创意&#xff0c;但面对市场、资金、政策等多方面的困难&#xff0c;许多独立开发者在这条路上艰难前行。 首先&#xff0c;市场竞争激烈是中国游戏独立开发者面临的首要挑战。随着游戏产…

【Amazon】通过代理连接的方式导入 AWS EKS集群至KubeSphere主容器平台

文章目录 一、设置主集群方式一&#xff1a;使用 Web 控制台方式二&#xff1a;使用 Kubectl命令 二、在主集群中设置代理服务地址方式一&#xff1a;使用 Web 控制台方式二&#xff1a;使用 Kubectl命令 三、登录控制台验证四、准备成员集群方式一&#xff1a;使用 Web 控制台…

Labelme加载AI(Segment-Anything)模型进行图像标注

labelme是使用python写的基于QT的跨平台图像标注工具&#xff0c;可用来标注分类、检测、分割、关键点等常见的视觉任务&#xff0c;支持VOC格式和COCO等的导出&#xff0c;代码简单易读&#xff0c;是非常利用上手的良心工具。 第一步&#xff1a;   下载源码进行安装。 g…

Redis 基本命令—— 超详细操作演示!!!

内存数据库 Redis7—— Redis 基本命令 三、Redis 基本命令&#xff08;下&#xff09;3.8 benchmark 测试工具3.9 简单动态字符串SDS3.10 集合的底层实现原理3.11 BitMap 操作命令3.12 HyperLogLog 操作命令3.13 Geospatial 操作命令3.14 发布/订阅命令3.15 Redis 事务 四、Re…

kafka 集群 KRaft 模式搭建

Apache Kafka是一个开源分布式事件流平台&#xff0c;被数千家公司用于高性能数据管道、流分析、数据集成和关键任务应用程序 Kafka 官网&#xff1a;https://kafka.apache.org/ Kafka 在2.8版本之后&#xff0c;移除了对Zookeeper的依赖&#xff0c;将依赖于ZooKeeper的控制器…

紫光展锐 展讯芯片 展讯处理器解锁BL 各分区结构 ROM 分区列表代表什么 bin img 表示什么意思

是展锐 Android 10.0、Android 9.0 平台 ROM 空间划分情况以及分区格式、分区大小和分区功能的 初步描述。 prodnv 开机后系统中的 productinfo 分区&#xff0c;保 存 adc 校准参数、eng.db 数据库。 Miscdata 保存 ota、recovery 时的一些数据 recovery 存放 recovery.i…

Horizon地平线财富一直坚持“创新、开放、协作、共享”的运营理念

在“寒风凛冽”的熊市&#xff0c;投资人需要一颗不断探索、勇于尝试的心。 勇气意味着即使你知道这条路很难&#xff0c;你仍然选择坚持。而信念则是相信&#xff0c;即使现在很多人不理解、甚至嘲笑&#xff0c;未来总会有一天他们会明白。 Horizon一直坚持着“创新、开放、…

058-第三代软件开发-文件Model

第三代软件开发-文件Model 文章目录 第三代软件开发-文件Model项目介绍文件Model 关键字&#xff1a; Qt、 Qml、 关键字3、 关键字4、 关键字5 项目介绍 欢迎来到我们的 QML & C 项目&#xff01;这个项目结合了 QML&#xff08;Qt Meta-Object Language&#xff09;…

【MATLAB源码-第90期】基于matlab的OQPSKsimulink仿真,对比初始信号和解调信号输出星座图。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 正交偏移二进制相移键控&#xff08;OQPSK, Orthogonal Quadrature Phase Shift Keying&#xff09;是一种数字调制技术&#xff0c;主要用于高效无线数据传输。它是传统二进制相移键控&#xff08;BPSK&#xff09;的一个变…

单链表原来是这样实现的!

文章目录 前言1. 链表的概念及结构1.1在链表里&#xff0c;每节“车厢”是什么样的呢&#xff1f;1.2为什么还需要指针变量来保存下⼀个节点的位置&#xff1f; 2. 单链表的实现1. 定义结构体(Seqlist)2. 打印函数(SLTPrint)小插曲&#xff0c;创建节点函数CreateNode3. 尾插函…

嵌入式的学习需要合理规划时间

低级的欲望放纵即可获得&#xff0c;高级的欲望只有克制才能达成。——卡耐基1、粉丝的误会 很多粉丝&#xff0c;问我&#xff0c; "胡老师我想报您的培训班。" ... 得知我知识业余时间写文章&#xff0c;紧接着又会问&#xff0c; "jg单位这么清闲啊&#…

预制构件二维码如何生成?

PC预制构件张贴二维码标识牌&#xff0c;可实现预制构建基本信息、设计图纸、安装说明书信息展示微信扫一扫即可查看预制件信息&#xff0c;大大提高施工的精度和效率&#xff1b;同时也可以实现预制生成过程管理、运输过程管理、安装过程管理、后期运维管理实现预制件的过程质…

Windows安装mysql8.0

官网地址&#xff1a;MySQL :: MySQL Community Downloads 选择相应版本信息下载 默认选择点击下一步 默认配置点击next 设置密码 默认配置