基于驾驶训练算法优化概率神经网络PNN的分类预测 - 附代码

基于驾驶训练算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于驾驶训练算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于驾驶训练优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用驾驶训练算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于驾驶训练优化的PNN网络

驾驶训练算法原理请参考:https://blog.csdn.net/u011835903/article/details/130538785

利用驾驶训练算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

驾驶训练参数设置如下:

%% 驾驶训练参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,驾驶训练-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/172347.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Robots 元标签与 X-Robots 标签

Robots Meta Tag 和 X-Robots-Tag 是两个常用的 HTML 标签,它们对观察机动爬虫和其他网络机器人很有启发性。这些标签可以控制您的网页如何被记录和显示。 什么是机器人元标记? 机器人元标记是一个 HTML 标签,它提供信息来查看电机爬虫和其…

Figma 插件学习(二)- 常用属性和方法

一. 如何调试figma插件 Plugins > Development > Show/Hide console 打开控制台即可开始调试 二.节点类型 根据不同的节点类型,也是会有不同的方法和属性,介绍几个常用节点类型 1.FrameNode 框架节点是用于定义布局层次结构的容器。它类似于HTM…

GWAS:plink进行meta分析

之前教程提到过Metal是可以做Meta分析,除了Metal,PLINK也可以进行Meta分析。 命令如下所示: plink --meta-analysis gwas1.plink gwas2.plink gwas3.plink logscale qt --meta-analysis-snp-field SNP --meta-analysis-chr-field CHR --me…

BrokerChain

BrokerChain: A Cross-Shard Blockchain Protocol for Account/Balance-based State Sharding 我总感觉这篇文章不完整,缺少一些东西。或者说有些地方并没有详细说。比如状态图的构建,网络重分片的的配置过程。都直接忽略了。 Motivation 1 跨片交易不…

流程图是什么,用什么软件做?

在工作流程中,经常会遇到需要图形化呈现整个流程的情况。流程图就是一种一目了然的图形化表现方式,便于人们理解、沟通和管理整个流程。 1.Visio Visio是一款微软公司的图表软件,可以用于创建各种类型的流程图、组织结构图、网络图、平面图…

编译原理词法分析器

算法描述 对于给出的源代码,我们按行将其读入,对于每一行单独进行词法分析。 过滤行前后空格对字符串进行词语的分割 有空格则把空格前的字符归为一个词比较上一个字符和当前字符是否需要进行分割 检查词语是否合法词语合法则按 [待测代码中的单词符号…

常见树种(贵州省):019滇白珠、杜茎山、苍山越桔、黄背越桔、贵州毛柃、半齿柃、钝叶柃、细枝柃、细齿叶柃木、土蜜树、山矾、胡颓子、檵木

摘要:本专栏树种介绍图片来源于PPBC中国植物图像库(下附网址),本文整理仅做交流学习使用,同时便于查找,如有侵权请联系删除。 图片网址:PPBC中国植物图像库——最大的植物分类图片库 一、滇白珠…

【Leetcode】【实现循环队列】【数据结构】

代码实现: typedef struct {int front;int back;int k;int* a;} MyCircularQueue;bool myCircularQueueIsEmpty(MyCircularQueue* obj) {return obj->frontobj->back; }bool myCircularQueueIsFull(MyCircularQueue* obj) {return (obj->back1)%(obj->…

【数据中台】开源项目(2)-Wormhole流式处理平台

Wormhole 是一个一站式流式处理云平台解决方案(SPaaS - Stream Processing as a Service)。 Wormhole 面向大数据流式处理项目的开发管理运维人员,致力于提供统一抽象的概念体系,直观可视化的操作界面,简单流畅的配置管…

GEE 22:基于GEE实现物种分布模型(更新中。。。。。。)

物种分布模型 1. 数据点准备1.1 数据加载1.2 去除指定距离内的重复点1.3 定义研究区范围1.4 选择预测因子1.5 伪不存在点生成 1. 数据点准备 1.1 数据加载 首先需要将CSV文件导入到GEE平台中,同样也可以导入shp格式文件。 // 1.Loading and cleaning your species …

P17C++析构函数

目录 前言 01 什么是析构函数 1.1 举个栗子 02 为什么要写析构函数 前言 今天我们要讨论一下它的“孪生兄弟”,析构函数,它们在某些方面非常相似。 与构造函数相反,当对象结束其生命周期,如对象所在的函数已调用完毕时&…

如何深刻理解从二项式分布到泊松分布

泊松镇贴 二项分布和泊松分布的表达式 二项分布: P ( x k ) C n k p k ( 1 − p ) n − k P(xk) C_n^kp^k(1-p)^{n-k} P(xk)Cnk​pk(1−p)n−k 泊松分布: P ( x k ) λ k k ! e − λ P(xk) \frac{\lambda^k}{k!}e^{-\lambda} P(xk)k!λk​e−…

坚鹏:中国工商银行数字化背景下银行公司业务如何快速转型培训

中国工商银行作为全球最大的银行,资产规模超过40万亿元,最近几年围绕“数字生态、数字资产、数字技术、数字基建、数字基因”五维布局,深入推进数字化转型,加快形成体系化、生态化实施路径,促进科技与业务加速融合&…

【JMeter】不同场景下的接口请求

场景1: 上传文件接口即Content-Type=multipart/form-data 步骤: 1. 接口url,method以及path正常填写 2.文件上传content-type是multipart/form-data,所以可以勾选【use multipart/form-data】,如果还有其他请求头信息可以添加一个请求头元件 3.请求参…

痤疮分类-yolov5 学习过程

1、在github上下载yolov5-5.0的源码。 GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite

【数据中台】开源项目(2)-Dbus系统架构

大体来说,Dbus支持两类数据源: RDBMS数据源 日志类数据源 1 RMDBMS类数据源的实现 以mysql为例子. 分为三个部分: 日志抽取模块(最新版DBus已经废弃该模块,使用canal直接输出到kafka) 增量转换模块 全量拉取模块 1.1 日志抽…

【JavaEE初阶】线程安全问题及解决方法

目录 一、多线程带来的风险-线程安全 1、观察线程不安全 2、线程安全的概念 3、线程不安全的原因 4、解决之前的线程不安全问题 5、synchronized 关键字 - 监视器锁 monitor lock 5.1 synchronized 的特性 5.2 synchronized 使用示例 5.3 Java 标准库中的线程安全类…

【Spring Boot】如何集成Swagger

Swagger简单介绍 Swagger是一个规范和完整的框架,用于生成、描述、调用和可视化RESTful风格的Web服务。功能主要包含以下几点: 可以使前后端分离开发更加方便,有利于团队协作接口文档可以在线自动生成,有利于降低后端开发人员编写…

【源码分析】zeebe actor模型源码解读

zeebe actor 模型🙋‍♂️ 如果有阅读过zeebe 源码的朋友一定能够经常看到actor.run() 之类的语法,那么这篇文章就围绕actor.run 方法,说说zeebe actor 的模型。 环境⛅ zeebe release-8.1.14 actor.run() 是怎么开始的🌈 Lon…

【python】Python将100个PDF文件对应的json文件存储到MySql数据库(源码)【独一无二】

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…