Linux学习笔记-芯片性能检测

文章目录

  • 概述
  • Dhrystone(单核性能测试工具)
    • 简介:
    • 源码下载:
    • 源码编译:
    • 使用及输出结果
  • coremark(多核性能测试工具)
    • 简介:
    • 源码下载:
    • 源码编译:
    • 使用及输出结果:
  • stream(DDR内存带宽测试工具)
    • 简介:
    • 源码下载:
    • 源码编译:
    • 使用及输出结果:

概述

本文描述linux系统下的芯片性能检测工具

Dhrystone(单核性能测试工具)

简介:

​ Dhrystone是测量处理器运算能力的最常见基准程序之一,常用于处理器的整型运算性能的测量。Dhrystone的计量单位为每秒计算多少次Dhrystone程序,后来把在VAX-11/780机器上的测试结果1757 Dhrystones/s定义为1 Dhrystone MIPS(百万条指令每秒,MIPS是Million Instructions Per Second的缩写)。
部分芯片测试结果参考网站:http://www.roylongbottom.org.uk/dhrystone results.htm

源码下载:

源码下载地址:http://www.roylongbottom.org.uk/classic_benchmarks.tar.gz

源码编译:

下载完源码后进行解压

tar -vxf classic_benchmarks.tar.gz

解压完成后进入文件夹,文件夹内容如下:

bin32:已经编译好的32位的工具bin64:已经编译好的64位工具source_code:源码目录--> common_32bit:通用的32位测试代码-->common_64bin:通用的64位测试代码-->dhrystone1:一代测试源码-->dhrystone2:二代测试源码-->linpack:浮点性能评估-->livermore_loops:其他工具-->whetstone:浮点性能测试程序README:说明文档

在解压的根目录创建一个存放编译的输出的文件夹,并进入文件夹

mkdir ./arm_build
cd ./arm_build

将相关的源码(cpuidc64.c、cpuidh.h、dhry.h、dhry_1.c 、dhry_2.c)拷贝到arm_build文件夹中

cp -rf ../source_code/common_64bit/cpuidc64.c ./
cp -rf ../source_code/common_64bit/cpuidh.h ./
cp -rf ../source_code/dhrystone2/dhry.h ./
cp -rf ../source_code/dhrystone2/dhry_1.c ./
cp -rf ../source_code/dhrystone2/dhry_2.c ./

拷贝完成后,创建makefile文件进行编译(这个makefile写了两种编译方式:gcc和arm64的交叉编译,根据需要选择屏蔽那个build_cc)

# build_cc=gcc
build_cc=/opt/rv3399/gcc-linaro-7.5.0-2019.12-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-gccmain:*.o${build_cc} -o dhry2_64 *.o${build_cc} -O2 -o dhry22_64 *.o${build_cc} -O3 -o dhry23_64 *.o*.o:*.c${build_cc} -g -c *.cclean:rm -f *.o dhry2_64 dhry22_64 dhry23_64

添加完成makefile后,直接执行make是编译不通过的,还需要修改一下源码

需要修改 cpuidh.h,在文件末尾的 #endif 前面加上对应函数的声明

int getDetails();
void start_time();
void end_time();

需要修改 cpuidc64.c,屏蔽掉其中3个函数(_cpuida() 、_calculateMHz() 这两个是汇编函数,写在/source_code/common_64bit/cpuida64.asm中,但因为编译不过,所以屏蔽掉),修改如下:

// _cpuida();
//   _calculateMHz();
//      pagesize = getpagesize();pagesize = 0;

这些源码中,_cpuida() 、_calculateMHz() 这两个是汇编函数,但是交叉编译编译汇编源码不通过,导致只能屏蔽掉对应的汇编源码

gcc编译汇编源码

nasm -f elf64 cpuida64.asm

交叉编译器编译汇编源码

/opt/rv3399/gcc-linaro-7.5.0-2019.12-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-as -f cpuida64.asm

以上两个编译汇编源码都会生成.o文件

修改完后执行编译

make clean
make

编译过程会有一些警告,不过也能正常编译出可执行文件:dhry2_64(无优化等级)、dhry22_64(优化等级2)、dhry23_64(优化等级3)

这3个可执行文件分别代表不同的优化等级,在Dhrystone中有大量的字符串复制语句,因此一个优化性能好的编译器能够在去掉循环的情形下通过一连串字的移动替代对字符串的复制,由此会出现优化等级越高,性能指标越好的情况。

使用及输出结果

直接执行可执行文件(dhry2_64),如果是交叉编译的,则只需要拷贝可执行文件(dhry2_64)到板子里面直接执行即可

输出结果如下:

root@ubuntu:~/classic_benchmarks/arm_build$ ./dhry2_64 ####################################################getDetails and MHzAssembler CPUID and RDTSC      CPU  , Features Code 00000000, Model Code 00000000Measured - Minimum -2147483648 MHz, Maximum 0 MHzLinux Functionsget_nprocs() - CPUs 2, Configured CPUs 2get_phys_pages() and size - RAM Size  0.00 GB, Page Size 0 Bytesuname() - Linux, ubuntu, 4.15.0-142-generic#146~16.04.1-Ubuntu SMP Tue Apr 13 09:27:15 UTC 2021, x86_64##########################################Dhrystone Benchmark, Version 2.1 (Language: C or C++)Optimisation    Opt 3 64 Bit
Register option not selected10000 runs   0.00 seconds 100000 runs   0.01 seconds 1000000 runs   0.06 seconds 2000000 runs   0.15 seconds 4000000 runs   0.28 seconds 8000000 runs   0.53 seconds 16000000 runs   1.05 seconds 32000000 runs   2.10 seconds Final values (* implementation-dependent):Int_Glob:      O.K.  5  Bool_Glob:     O.K.  1
Ch_1_Glob:     O.K.  A  Ch_2_Glob:     O.K.  B
Arr_1_Glob[8]: O.K.  7  Arr_2_Glob8/7: O.K.    32000010
Ptr_Glob->              Ptr_Comp:       *    25137728Discr:       O.K.  0  Enum_Comp:     O.K.  2Int_Comp:    O.K.  17 Str_Comp:      O.K.  DHRYSTONE PROGRAM, SOME STRING
Next_Ptr_Glob->         Ptr_Comp:       *    25137728 same as aboveDiscr:       O.K.  0  Enum_Comp:     O.K.  1Int_Comp:    O.K.  18 Str_Comp:      O.K.  DHRYSTONE PROGRAM, SOME STRING
Int_1_Loc:     O.K.  5  Int_2_Loc:     O.K.  13
Int_3_Loc:     O.K.  7  Enum_Loc:      O.K.  1  
Str_1_Loc:                             O.K.  DHRYSTONE PROGRAM, 1'ST STRING
Str_2_Loc:                             O.K.  DHRYSTONE PROGRAM, 2'ND STRINGMicroseconds for one run through Dhrystone:         0.07 
Dhrystones per Second:                        15248279 
VAX  MIPS rating =                               8678.59 Press Enter

输出完结果后,按回车键可以退出界面,其中“15248279”表示单核的性能测试结果

Dhrystones per Second:                        15248279 

coremark(多核性能测试工具)

简介:

CoreMark是一个简单而复杂的基准测试,专门用于测试处理器核心的功能。运行CoreMark产生一个单数字分数(每秒钟能够执行的迭代次数(Iterations per Second,即CoreMarks),迭代次数越高,性能越好),允许用户快速比较处理器。

官网地址:https://www.eembc.org/coremark/index.php

一些芯片的性能参数参考列表:https://www.eembc.org/coremark/scores.php

源码下载:

源码下载地址:https://github.com/eembc/coremark

源码编译:

进入源码根目录后,执行编译命令

gcc编译:

# 先清除编译参数
make clean
# 重新编译
make

生成coremark.exe的可执行文件,这个可执行文件是可以直接在linux下运行的,查看编译出来的文件是否符合编译平台

root@ubuntu:~/app/coremark-main$ file ./coremark.exe 
./coremark.exe: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32, BuildID[sha1]=dd83f1651bf5fa4b513c4bc077146c2d1add2287, not stripped

可以看到是x86-64平台的,直接运行可执行文件coremark.exe即可

交叉编译器编译:

# 先清除编译参数
make clean
# 重新编译
make CC=aarch64-linux-gnu-gcc CXX=aarch64-linux-gnu-g++

生成coremark.exe的可执行文件,这个可执行文件是可以直接在linux下运行的,查看交叉编译出来的文件是否符合交叉编译的平台

root@ubuntu:~/app/coremark-main$ file ./coremark.exe 
./coremark.exe: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, for GNU/Linux 3.7.0, BuildID[sha1]=e60d55afe73eb5ddb2158e1a6a77b33130719b6b, not stripped

可以看到是“ARM aarch64”平台的,将该可执行文件coremark.exe复制到板子中直接运行即可

使用及输出结果:

直接运行可执行文件(执行后需要等一会才会输出结果)

./coremark.exe

运行结果

root@ubuntu:~/app/coremark-main$ ./coremark.exe 
2K performance run parameters for coremark.
CoreMark Size    : 666
Total ticks      : 16466
Total time (secs): 16.466000
Iterations/Sec   : 18219.361108
Iterations       : 300000
Compiler version : GCC5.4.0 20160609
Compiler flags   : -O2 -DPERFORMANCE_RUN=1  -lrt
Memory location  : Please put data memory location here(e.g. code in flash, data on heap etc)
seedcrc          : 0xe9f5
[0]crclist       : 0xe714
[0]crcmatrix     : 0x1fd7
[0]crcstate      : 0x8e3a
[0]crcfinal      : 0xcc42
Correct operation validated. See README.md for run and reporting rules.
CoreMark 1.0 : 18219.361108 / GCC5.4.0 20160609 -O2 -DPERFORMANCE_RUN=1  -lrt / Heap

可以看到总共迭代了300000次,共耗时16.466s,每秒的迭代次数为18219.361108次,可以通过这个迭代次数来评估出cpu的处理能力

stream(DDR内存带宽测试工具)

简介:

​ STREAM: Sustainable Memory Bandwidth in High Performance Computers(高性能计算机的可持续内存带宽),这是一个内存带宽测试的工具,主要是以四个方面反映测试结果:

copy(复制操作,2次访问内存(1读1写)):从内存单元中读取一个数,并复制到其他内存单元中;scale(乘法操作,2次访问内存(1读1写)):从内存单元中读取一个数,与常数相乘,得到的记过存到其他内存单元;Add(加法操作,3次访问内存(2读1写)):从两个内存单元中分别读取两个数,将其进行加法操作后,得到的结果写入另一个内存单元中;Triad(综合操作,3次访问内存(2读1写)):先从内存中读取一个数,与一个常数相乘得到一个乘积,然后从另一个内存单元中读取一个数与刚才乘积结果相加,得到的结果写入内存;

测试结果一般的规律是Add > Triad > Copy > Scale;

单核Stream测试,影响的因素除了内存控制器能力外,还有Core的ROB、Load/Store对其影响,因此不是单纯的内存带宽性能测试

多核Stream测试,通过多核同时发出大量内存访问请求,能够更加饱和地访问内存,从而测试到内存带宽的极限性能

官网地址:https://www.cs.virginia.edu/stream/

源码下载:

有C语言版本和Fortran语言版本,都需要自己下载源码后编译成可执行文件,再运行可编译出来的可执行文件输出测试结果;

官网源码地址(C语言版本):https://www.cs.virginia.edu/stream/FTP/Code/stream.c

官网源码地址(Fortran语言版本):https://www.cs.virginia.edu/stream/FTP/Code/stream.f

以下是C语言版本的源码:

/*-----------------------------------------------------------------------*/
/* Program: STREAM                                                       */
/* Revision: $Id: stream.c,v 5.10 2013/01/17 16:01:06 mccalpin Exp mccalpin $ */
/* Original code developed by John D. McCalpin                           */
/* Programmers: John D. McCalpin                                         */
/*              Joe R. Zagar                                             */
/*                                                                       */
/* This program measures memory transfer rates in MB/s for simple        */
/* computational kernels coded in C.                                     */
/*-----------------------------------------------------------------------*/
/* Copyright 1991-2013: John D. McCalpin                                 */
/*-----------------------------------------------------------------------*/
/* License:                                                              */
/*  1. You are free to use this program and/or to redistribute           */
/*     this program.                                                     */
/*  2. You are free to modify this program for your own use,             */
/*     including commercial use, subject to the publication              */
/*     restrictions in item 3.                                           */
/*  3. You are free to publish results obtained from running this        */
/*     program, or from works that you derive from this program,         */
/*     with the following limitations:                                   */
/*     3a. In order to be referred to as "STREAM benchmark results",     */
/*         published results must be in conformance to the STREAM        */
/*         Run Rules, (briefly reviewed below) published at              */
/*         http://www.cs.virginia.edu/stream/ref.html                    */
/*         and incorporated herein by reference.                         */
/*         As the copyright holder, John McCalpin retains the            */
/*         right to determine conformity with the Run Rules.             */
/*     3b. Results based on modified source code or on runs not in       */
/*         accordance with the STREAM Run Rules must be clearly          */
/*         labelled whenever they are published.  Examples of            */
/*         proper labelling include:                                     */
/*           "tuned STREAM benchmark results"                            */
/*           "based on a variant of the STREAM benchmark code"           */
/*         Other comparable, clear, and reasonable labelling is          */
/*         acceptable.                                                   */
/*     3c. Submission of results to the STREAM benchmark web site        */
/*         is encouraged, but not required.                              */
/*  4. Use of this program or creation of derived works based on this    */
/*     program constitutes acceptance of these licensing restrictions.   */
/*  5. Absolutely no warranty is expressed or implied.                   */
/*-----------------------------------------------------------------------*/
# include <stdio.h>
# include <unistd.h>
# include <math.h>
# include <float.h>
# include <limits.h>
# include <sys/time.h>/*-----------------------------------------------------------------------* INSTRUCTIONS:**	1) STREAM requires different amounts of memory to run on different*           systems, depending on both the system cache size(s) and the*           granularity of the system timer.*     You should adjust the value of 'STREAM_ARRAY_SIZE' (below)*           to meet *both* of the following criteria:*       (a) Each array must be at least 4 times the size of the*           available cache memory. I don't worry about the difference*           between 10^6 and 2^20, so in practice the minimum array size*           is about 3.8 times the cache size.*           Example 1: One Xeon E3 with 8 MB L3 cache*               STREAM_ARRAY_SIZE should be >= 4 million, giving*               an array size of 30.5 MB and a total memory requirement*               of 91.5 MB.  *           Example 2: Two Xeon E5's with 20 MB L3 cache each (using OpenMP)*               STREAM_ARRAY_SIZE should be >= 20 million, giving*               an array size of 153 MB and a total memory requirement*               of 458 MB.  *       (b) The size should be large enough so that the 'timing calibration'*           output by the program is at least 20 clock-ticks.  *           Example: most versions of Windows have a 10 millisecond timer*               granularity.  20 "ticks" at 10 ms/tic is 200 milliseconds.*               If the chip is capable of 10 GB/s, it moves 2 GB in 200 msec.*               This means the each array must be at least 1 GB, or 128M elements.**      Version 5.10 increases the default array size from 2 million*          elements to 10 million elements in response to the increasing*          size of L3 caches.  The new default size is large enough for caches*          up to 20 MB. *      Version 5.10 changes the loop index variables from "register int"*          to "ssize_t", which allows array indices >2^32 (4 billion)*          on properly configured 64-bit systems.  Additional compiler options*          (such as "-mcmodel=medium") may be required for large memory runs.**      Array size can be set at compile time without modifying the source*          code for the (many) compilers that support preprocessor definitions*          on the compile line.  E.g.,*                gcc -O -DSTREAM_ARRAY_SIZE=100000000 stream.c -o stream.100M*          will override the default size of 10M with a new size of 100M elements*          per array.*/
#ifndef STREAM_ARRAY_SIZE
#   define STREAM_ARRAY_SIZE	10000000
#endif/*  2) STREAM runs each kernel "NTIMES" times and reports the *best* result*         for any iteration after the first, therefore the minimum value*         for NTIMES is 2.*      There are no rules on maximum allowable values for NTIMES, but*         values larger than the default are unlikely to noticeably*         increase the reported performance.*      NTIMES can also be set on the compile line without changing the source*         code using, for example, "-DNTIMES=7".*/
#ifdef NTIMES
#if NTIMES<=1
#   define NTIMES	10
#endif
#endif
#ifndef NTIMES
#   define NTIMES	10
#endif/*  Users are allowed to modify the "OFFSET" variable, which *may* change the*         relative alignment of the arrays (though compilers may change the *         effective offset by making the arrays non-contiguous on some systems). *      Use of non-zero values for OFFSET can be especially helpful if the*         STREAM_ARRAY_SIZE is set to a value close to a large power of 2.*      OFFSET can also be set on the compile line without changing the source*         code using, for example, "-DOFFSET=56".*/
#ifndef OFFSET
#   define OFFSET	0
#endif/**	3) Compile the code with optimization.  Many compilers generate*       unreasonably bad code before the optimizer tightens things up.  *     If the results are unreasonably good, on the other hand, the*       optimizer might be too smart for me!**     For a simple single-core version, try compiling with:*            cc -O stream.c -o stream*     This is known to work on many, many systems....**     To use multiple cores, you need to tell the compiler to obey the OpenMP*       directives in the code.  This varies by compiler, but a common example is*            gcc -O -fopenmp stream.c -o stream_omp*       The environment variable OMP_NUM_THREADS allows runtime control of the *         number of threads/cores used when the resulting "stream_omp" program*         is executed.**     To run with single-precision variables and arithmetic, simply add*         -DSTREAM_TYPE=float*     to the compile line.*     Note that this changes the minimum array sizes required --- see (1) above.**     The preprocessor directive "TUNED" does not do much -- it simply causes the *       code to call separate functions to execute each kernel.  Trivial versions*       of these functions are provided, but they are *not* tuned -- they just *       provide predefined interfaces to be replaced with tuned code.***	4) Optional: Mail the results to mccalpin@cs.virginia.edu*	   Be sure to include info that will help me understand:*		a) the computer hardware configuration (e.g., processor model, memory type)*		b) the compiler name/version and compilation flags*      c) any run-time information (such as OMP_NUM_THREADS)*		d) all of the output from the test case.** Thanks!**-----------------------------------------------------------------------*/# define HLINE "-------------------------------------------------------------\n"# ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
# endif
# ifndef MAX
# define MAX(x,y) ((x)>(y)?(x):(y))
# endif#ifndef STREAM_TYPE
#define STREAM_TYPE double
#endifstatic STREAM_TYPE	a[STREAM_ARRAY_SIZE+OFFSET],b[STREAM_ARRAY_SIZE+OFFSET],c[STREAM_ARRAY_SIZE+OFFSET];static double	avgtime[4] = {0}, maxtime[4] = {0},mintime[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};static char	*label[4] = {"Copy:      ", "Scale:     ","Add:       ", "Triad:     "};static double	bytes[4] = {2 * sizeof(STREAM_TYPE) * STREAM_ARRAY_SIZE,2 * sizeof(STREAM_TYPE) * STREAM_ARRAY_SIZE,3 * sizeof(STREAM_TYPE) * STREAM_ARRAY_SIZE,3 * sizeof(STREAM_TYPE) * STREAM_ARRAY_SIZE};extern double mysecond();
extern void checkSTREAMresults();
#ifdef TUNED
extern void tuned_STREAM_Copy();
extern void tuned_STREAM_Scale(STREAM_TYPE scalar);
extern void tuned_STREAM_Add();
extern void tuned_STREAM_Triad(STREAM_TYPE scalar);
#endif
#ifdef _OPENMP
extern int omp_get_num_threads();
#endif
int
main(){int			quantum, checktick();int			BytesPerWord;int			k;ssize_t		j;STREAM_TYPE		scalar;double		t, times[4][NTIMES];/* --- SETUP --- determine precision and check timing --- */printf(HLINE);printf("STREAM version $Revision: 5.10 $\n");printf(HLINE);BytesPerWord = sizeof(STREAM_TYPE);printf("This system uses %d bytes per array element.\n",BytesPerWord);printf(HLINE);
#ifdef Nprintf("*****  WARNING: ******\n");printf("      It appears that you set the preprocessor variable N when compiling this code.\n");printf("      This version of the code uses the preprocesor variable STREAM_ARRAY_SIZE to control the array size\n");printf("      Reverting to default value of STREAM_ARRAY_SIZE=%llu\n",(unsigned long long) STREAM_ARRAY_SIZE);printf("*****  WARNING: ******\n");
#endifprintf("Array size = %llu (elements), Offset = %d (elements)\n" , (unsigned long long) STREAM_ARRAY_SIZE, OFFSET);printf("Memory per array = %.1f MiB (= %.1f GiB).\n", BytesPerWord * ( (double) STREAM_ARRAY_SIZE / 1024.0/1024.0),BytesPerWord * ( (double) STREAM_ARRAY_SIZE / 1024.0/1024.0/1024.0));printf("Total memory required = %.1f MiB (= %.1f GiB).\n",(3.0 * BytesPerWord) * ( (double) STREAM_ARRAY_SIZE / 1024.0/1024.),(3.0 * BytesPerWord) * ( (double) STREAM_ARRAY_SIZE / 1024.0/1024./1024.));printf("Each kernel will be executed %d times.\n", NTIMES);printf(" The *best* time for each kernel (excluding the first iteration)\n"); printf(" will be used to compute the reported bandwidth.\n");#ifdef _OPENMPprintf(HLINE);
#pragma omp parallel {
#pragma omp master{k = omp_get_num_threads();printf ("Number of Threads requested = %i\n",k);}}
#endif#ifdef _OPENMPk = 0;
#pragma omp parallel
#pragma omp atomic k++;printf ("Number of Threads counted = %i\n",k);
#endif/* Get initial value for system clock. */
#pragma omp parallel forfor (j=0; j<STREAM_ARRAY_SIZE; j++) {a[j] = 1.0;b[j] = 2.0;c[j] = 0.0;}printf(HLINE);if  ( (quantum = checktick()) >= 1) printf("Your clock granularity/precision appears to be ""%d microseconds.\n", quantum);else {printf("Your clock granularity appears to be ""less than one microsecond.\n");quantum = 1;}t = mysecond();
#pragma omp parallel forfor (j = 0; j < STREAM_ARRAY_SIZE; j++)a[j] = 2.0E0 * a[j];t = 1.0E6 * (mysecond() - t);printf("Each test below will take on the order"" of %d microseconds.\n", (int) t  );printf("   (= %d clock ticks)\n", (int) (t/quantum) );printf("Increase the size of the arrays if this shows that\n");printf("you are not getting at least 20 clock ticks per test.\n");printf(HLINE);printf("WARNING -- The above is only a rough guideline.\n");printf("For best results, please be sure you know the\n");printf("precision of your system timer.\n");printf(HLINE);/*	--- MAIN LOOP --- repeat test cases NTIMES times --- */scalar = 3.0;for (k=0; k<NTIMES; k++){times[0][k] = mysecond();
#ifdef TUNEDtuned_STREAM_Copy();
#else
#pragma omp parallel forfor (j=0; j<STREAM_ARRAY_SIZE; j++)c[j] = a[j];
#endiftimes[0][k] = mysecond() - times[0][k];times[1][k] = mysecond();
#ifdef TUNEDtuned_STREAM_Scale(scalar);
#else
#pragma omp parallel forfor (j=0; j<STREAM_ARRAY_SIZE; j++)b[j] = scalar*c[j];
#endiftimes[1][k] = mysecond() - times[1][k];times[2][k] = mysecond();
#ifdef TUNEDtuned_STREAM_Add();
#else
#pragma omp parallel forfor (j=0; j<STREAM_ARRAY_SIZE; j++)c[j] = a[j]+b[j];
#endiftimes[2][k] = mysecond() - times[2][k];times[3][k] = mysecond();
#ifdef TUNEDtuned_STREAM_Triad(scalar);
#else
#pragma omp parallel forfor (j=0; j<STREAM_ARRAY_SIZE; j++)a[j] = b[j]+scalar*c[j];
#endiftimes[3][k] = mysecond() - times[3][k];}/*	--- SUMMARY --- */for (k=1; k<NTIMES; k++) /* note -- skip first iteration */{for (j=0; j<4; j++){avgtime[j] = avgtime[j] + times[j][k];mintime[j] = MIN(mintime[j], times[j][k]);maxtime[j] = MAX(maxtime[j], times[j][k]);}}printf("Function    Best Rate MB/s  Avg time     Min time     Max time\n");for (j=0; j<4; j++) {avgtime[j] = avgtime[j]/(double)(NTIMES-1);printf("%s%12.1f  %11.6f  %11.6f  %11.6f\n", label[j],1.0E-06 * bytes[j]/mintime[j],avgtime[j],mintime[j],maxtime[j]);}printf(HLINE);/* --- Check Results --- */checkSTREAMresults();printf(HLINE);return 0;
}# define	M	20int
checktick(){int		i, minDelta, Delta;double	t1, t2, timesfound[M];/*  Collect a sequence of M unique time values from the system. */for (i = 0; i < M; i++) {t1 = mysecond();while( ((t2=mysecond()) - t1) < 1.0E-6 );timesfound[i] = t1 = t2;}/** Determine the minimum difference between these M values.* This result will be our estimate (in microseconds) for the* clock granularity.*/minDelta = 1000000;for (i = 1; i < M; i++) {Delta = (int)( 1.0E6 * (timesfound[i]-timesfound[i-1]));minDelta = MIN(minDelta, MAX(Delta,0));}return(minDelta);}/* A gettimeofday routine to give access to the wallclock timer on most UNIX-like systems.  */#include <sys/time.h>double mysecond()
{struct timeval tp;struct timezone tzp;int i;i = gettimeofday(&tp,&tzp);return ( (double) tp.tv_sec + (double) tp.tv_usec * 1.e-6 );
}#ifndef abs
#define abs(a) ((a) >= 0 ? (a) : -(a))
#endif
void checkSTREAMresults ()
{STREAM_TYPE aj,bj,cj,scalar;STREAM_TYPE aSumErr,bSumErr,cSumErr;STREAM_TYPE aAvgErr,bAvgErr,cAvgErr;double epsilon;ssize_t	j;int	k,ierr,err;/* reproduce initialization */aj = 1.0;bj = 2.0;cj = 0.0;/* a[] is modified during timing check */aj = 2.0E0 * aj;/* now execute timing loop */scalar = 3.0;for (k=0; k<NTIMES; k++){cj = aj;bj = scalar*cj;cj = aj+bj;aj = bj+scalar*cj;}/* accumulate deltas between observed and expected results */aSumErr = 0.0;bSumErr = 0.0;cSumErr = 0.0;for (j=0; j<STREAM_ARRAY_SIZE; j++) {aSumErr += abs(a[j] - aj);bSumErr += abs(b[j] - bj);cSumErr += abs(c[j] - cj);// if (j == 417) printf("Index 417: c[j]: %f, cj: %f\n",c[j],cj);	// MCCALPIN}aAvgErr = aSumErr / (STREAM_TYPE) STREAM_ARRAY_SIZE;bAvgErr = bSumErr / (STREAM_TYPE) STREAM_ARRAY_SIZE;cAvgErr = cSumErr / (STREAM_TYPE) STREAM_ARRAY_SIZE;if (sizeof(STREAM_TYPE) == 4) {epsilon = 1.e-6;}else if (sizeof(STREAM_TYPE) == 8) {epsilon = 1.e-13;}else {printf("WEIRD: sizeof(STREAM_TYPE) = %lu\n",sizeof(STREAM_TYPE));epsilon = 1.e-6;}err = 0;if (abs(aAvgErr/aj) > epsilon) {err++;printf ("Failed Validation on array a[], AvgRelAbsErr > epsilon (%e)\n",epsilon);printf ("     Expected Value: %e, AvgAbsErr: %e, AvgRelAbsErr: %e\n",aj,aAvgErr,abs(aAvgErr)/aj);ierr = 0;for (j=0; j<STREAM_ARRAY_SIZE; j++) {if (abs(a[j]/aj-1.0) > epsilon) {ierr++;
#ifdef VERBOSEif (ierr < 10) {printf("         array a: index: %ld, expected: %e, observed: %e, relative error: %e\n",j,aj,a[j],abs((aj-a[j])/aAvgErr));}
#endif}}printf("     For array a[], %d errors were found.\n",ierr);}if (abs(bAvgErr/bj) > epsilon) {err++;printf ("Failed Validation on array b[], AvgRelAbsErr > epsilon (%e)\n",epsilon);printf ("     Expected Value: %e, AvgAbsErr: %e, AvgRelAbsErr: %e\n",bj,bAvgErr,abs(bAvgErr)/bj);printf ("     AvgRelAbsErr > Epsilon (%e)\n",epsilon);ierr = 0;for (j=0; j<STREAM_ARRAY_SIZE; j++) {if (abs(b[j]/bj-1.0) > epsilon) {ierr++;
#ifdef VERBOSEif (ierr < 10) {printf("         array b: index: %ld, expected: %e, observed: %e, relative error: %e\n",j,bj,b[j],abs((bj-b[j])/bAvgErr));}
#endif}}printf("     For array b[], %d errors were found.\n",ierr);}if (abs(cAvgErr/cj) > epsilon) {err++;printf ("Failed Validation on array c[], AvgRelAbsErr > epsilon (%e)\n",epsilon);printf ("     Expected Value: %e, AvgAbsErr: %e, AvgRelAbsErr: %e\n",cj,cAvgErr,abs(cAvgErr)/cj);printf ("     AvgRelAbsErr > Epsilon (%e)\n",epsilon);ierr = 0;for (j=0; j<STREAM_ARRAY_SIZE; j++) {if (abs(c[j]/cj-1.0) > epsilon) {ierr++;
#ifdef VERBOSEif (ierr < 10) {printf("         array c: index: %ld, expected: %e, observed: %e, relative error: %e\n",j,cj,c[j],abs((cj-c[j])/cAvgErr));}
#endif}}printf("     For array c[], %d errors were found.\n",ierr);}if (err == 0) {printf ("Solution Validates: avg error less than %e on all three arrays\n",epsilon);}
#ifdef VERBOSEprintf ("Results Validation Verbose Results: \n");printf ("    Expected a(1), b(1), c(1): %f %f %f \n",aj,bj,cj);printf ("    Observed a(1), b(1), c(1): %f %f %f \n",a[1],b[1],c[1]);printf ("    Rel Errors on a, b, c:     %e %e %e \n",abs(aAvgErr/aj),abs(bAvgErr/bj),abs(cAvgErr/cj));
#endif
}#ifdef TUNED
/* stubs for "tuned" versions of the kernels */
void tuned_STREAM_Copy()
{ssize_t j;
#pragma omp parallel forfor (j=0; j<STREAM_ARRAY_SIZE; j++)c[j] = a[j];
}void tuned_STREAM_Scale(STREAM_TYPE scalar)
{ssize_t j;
#pragma omp parallel forfor (j=0; j<STREAM_ARRAY_SIZE; j++)b[j] = scalar*c[j];
}void tuned_STREAM_Add()
{ssize_t j;
#pragma omp parallel forfor (j=0; j<STREAM_ARRAY_SIZE; j++)c[j] = a[j]+b[j];
}void tuned_STREAM_Triad(STREAM_TYPE scalar)
{ssize_t j;
#pragma omp parallel forfor (j=0; j<STREAM_ARRAY_SIZE; j++)a[j] = b[j]+scalar*c[j];
}
/* end of stubs for the "tuned" versions of the kernels */
#endif

源码编译:

可以使用gcc直接编译,如果需要移植到其他平台可以使用交叉编译

gcc编译(带编译参数):

gcc -O3  -mtune=native -march=native -fopenmp -DSTREAM_ARRAY_SIZE=200000000 -DNTIMES=100 stream.c -o stream

gcc编译(默认参数):

gcc stream.c -o stream

交叉编译器编译(默认参数):

aarch64-linux-gnu-gcc stream.c -o stream

编译参数说明:

-O3 :指定最高编译优化级别,如-O0,-O1,-O2,-O3-fopenmp:启用OpenMP,适应多处理器环境,更能得到内存带宽实际最大值。开启后,程序默认运行线程为CPU线程数-DN=2000000(部分版本是-DSTREAM_ARRAY_SIZE=200000000):指定测试数组a[]、b[]、c[]的大小(Array size)
该值对测试结果影响较大(5.9版本默认值2000000,。若stream.c为5.10版本,参数名变为-DSTREAM_ARRAY_SIZE,默认值10000000);
注意:必须设置测试数组大小远大于CPU 最高级缓存(一般为L3 Cache)的大小,否则就是测试CPU缓存的吞吐性能,而非内存吞吐性能;
推荐计算公式:{最高级缓存X MB}×1024×1024×4.1×CPU路数/8,结果取整数;
公式说明:由于stream.c源码推荐设置至少4倍最高级缓存,且STREAM_ARRAY_SIZE为double类型=8 Byte。所以公式为:最高级缓存(单位:Byte)×4.1倍×CPU路数/8;
eg:测试机器是双路CPU,最高级缓存32MB,则计算值为32×1024×1024×4.1×2/8≈34393292-DNTIMES=10:执行的次数,并从这些结果中选最优值-mtune=native -march=native:针对CPU指令的优化-mcmodel=medium:当单个Memory Array Size 大于2GB时需要设置此参数;
新的gcc已经不支持‘-mcmodel=medium’参数了,可以改为“-mcmodel=large”、“-mcmodel=small”、“-mcmodel=tiny”-DOFFSET=4096:数组的偏移,一般可以不定义

使用及输出结果:

设置运行时的进程数(可设可不设)

# export OMP_NUM_THREADS=x x为自定义的要使用的处理器数量
export OMP_NUM_THREADS=8

直接运行编译出来的stream

export OMP_NUM_THREADS=8
./stream

编译及运行结果

root@ubuntu:~/app/stream_ddr$ gcc stream.c -o stream
root@ubuntu:~/app/stream_ddr$ export OMP_NUM_THREADS=8
root@ubuntu:~/app/stream_ddr$ ./stream 
-------------------------------------------------------------
STREAM version $Revision: 5.10 $
-------------------------------------------------------------
This system uses 8 bytes per array element.
-------------------------------------------------------------
Array size = 10000000 (elements), Offset = 0 (elements)
Memory per array = 76.3 MiB (= 0.1 GiB).
Total memory required = 228.9 MiB (= 0.2 GiB).
Each kernel will be executed 10 times.The *best* time for each kernel (excluding the first iteration)will be used to compute the reported bandwidth.
-------------------------------------------------------------
Your clock granularity/precision appears to be 1 microseconds.
Each test below will take on the order of 20046 microseconds.(= 20046 clock ticks)
Increase the size of the arrays if this shows that
you are not getting at least 20 clock ticks per test.
-------------------------------------------------------------
WARNING -- The above is only a rough guideline.
For best results, please be sure you know the
precision of your system timer.
-------------------------------------------------------------
Function    Best Rate MB/s  Avg time     Min time     Max time
Copy:            7940.8     0.020932     0.020149     0.023032
Scale:           9247.6     0.018226     0.017302     0.019239
Add:            10917.1     0.022417     0.021984     0.023661
Triad:          10522.6     0.023232     0.022808     0.023928
-------------------------------------------------------------
Solution Validates: avg error less than 1.000000e-13 on all three arrays
-------------------------------------------------------------

在下面可以看到输出Copy、Scale、Add、Triad的数据读写速度及时间

-------------------------------------------------------------
Function    Best Rate MB/s  Avg time     Min time     Max time
Copy:            7940.8     0.020932     0.020149     0.023032
Scale:           9247.6     0.018226     0.017302     0.019239
Add:            10917.1     0.022417     0.021984     0.023661
Triad:          10522.6     0.023232     0.022808     0.023928
-------------------------------------------------------------

免责声明:本文内容含网络参考、作者编写等,内容版权归原作者所有,未经允许,禁止转载。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/172332.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何深刻理解从二项式分布到泊松分布

泊松镇贴 二项分布和泊松分布的表达式 二项分布&#xff1a; P ( x k ) C n k p k ( 1 − p ) n − k P(xk) C_n^kp^k(1-p)^{n-k} P(xk)Cnk​pk(1−p)n−k 泊松分布&#xff1a; P ( x k ) λ k k ! e − λ P(xk) \frac{\lambda^k}{k!}e^{-\lambda} P(xk)k!λk​e−…

坚鹏:中国工商银行数字化背景下银行公司业务如何快速转型培训

中国工商银行作为全球最大的银行&#xff0c;资产规模超过40万亿元&#xff0c;最近几年围绕“数字生态、数字资产、数字技术、数字基建、数字基因”五维布局&#xff0c;深入推进数字化转型&#xff0c;加快形成体系化、生态化实施路径&#xff0c;促进科技与业务加速融合&…

【2023 年终盘点】今年用的最多的 10 款 Mac 应用

分享顺哥今年用的最多的 10 款 Mac 应用。 排名不分先后,涉及各个方面的应用。 大家有好用的软件也欢迎在评论区留言分享! 顺哥博客 部分软件下载地址:顺哥的文件站 Mac 篇 以下 10 款应用大多数为免费应用,收费的会标明。 部分收费软件的破解版可以到这边下载 https:…

Vue框架学习笔记——数据代理

文章目录 前文提要数据代理的概念MVVM模型和Vue中的数据代理M&#xff0c;模型V&#xff0c;视图VM&#xff0c;视图模型 前文提要 本人仅做个人学习记录&#xff0c;如有错误&#xff0c;请多包涵 数据代理的概念 使用一个对象代理对另一个对象中属性的操作。 MVVM模型和Vu…

开发、测试、生产环境

开发环境&#xff1a;开发环境是程序猿们专门用于开发的服务器&#xff0c;配置可以比较随意&#xff0c; 为了开发调试方便&#xff0c;一般打开全部错误报告。简单讲就是项目尚且处于编码阶段&#xff0c;一般这时候会把代码放在开发环境中&#xff0c;不会放在生产环境中。 …

【JMeter】不同场景下的接口请求

场景1: 上传文件接口即Content-Type=multipart/form-data 步骤: 1. 接口url,method以及path正常填写 2.文件上传content-type是multipart/form-data,所以可以勾选【use multipart/form-data】,如果还有其他请求头信息可以添加一个请求头元件 3.请求参…

ubuntu 使用快照启动polygon主网

文章目录 一、 环境部署1.1 golang环境部署1.2 git安装1.3 gcc安装1.4 zstd 安装1.5 pv 安装1.6 aria2c 安装二、安装 polygon2.1 heimdall 安装2.1.1 heimdall 编译2.1.2 初始化 heimdall2.1.3 修改配置文件2.2 bor 安装2.2.1 bor 编译2.2.2 创建bor数据目录2.2.3 修改配置文件…

痤疮分类-yolov5 学习过程

1、在github上下载yolov5-5.0的源码。 GitHub - ultralytics/yolov5: YOLOv5 &#x1f680; in PyTorch > ONNX > CoreML > TFLite

【数据中台】开源项目(2)-Dbus系统架构

大体来说&#xff0c;Dbus支持两类数据源&#xff1a; RDBMS数据源 日志类数据源 1 RMDBMS类数据源的实现 以mysql为例子. 分为三个部分&#xff1a; 日志抽取模块(最新版DBus已经废弃该模块&#xff0c;使用canal直接输出到kafka) 增量转换模块 全量拉取模块 1.1 日志抽…

【JavaEE初阶】线程安全问题及解决方法

目录 一、多线程带来的风险-线程安全 1、观察线程不安全 2、线程安全的概念 3、线程不安全的原因 4、解决之前的线程不安全问题 5、synchronized 关键字 - 监视器锁 monitor lock 5.1 synchronized 的特性 5.2 synchronized 使用示例 5.3 Java 标准库中的线程安全类…

【Spring Boot】如何集成Swagger

Swagger简单介绍 Swagger是一个规范和完整的框架&#xff0c;用于生成、描述、调用和可视化RESTful风格的Web服务。功能主要包含以下几点&#xff1a; 可以使前后端分离开发更加方便&#xff0c;有利于团队协作接口文档可以在线自动生成&#xff0c;有利于降低后端开发人员编写…

【源码分析】zeebe actor模型源码解读

zeebe actor 模型&#x1f64b;‍♂️ 如果有阅读过zeebe 源码的朋友一定能够经常看到actor.run() 之类的语法&#xff0c;那么这篇文章就围绕actor.run 方法&#xff0c;说说zeebe actor 的模型。 环境⛅ zeebe release-8.1.14 actor.run() 是怎么开始的&#x1f308; Lon…

【python】Python将100个PDF文件对应的json文件存储到MySql数据库(源码)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

那些年,关于CKACKS认证的那些事儿?

前言 遥想2020年的年初&#xff0c;疫情封城封村之际&#xff0c;工作之余在B站将尚硅谷的linux中的k8s视频完整系统的学习了一遍&#xff0c;自此像是打通了任督二脉一般&#xff0c;开启了对k8s的探索之旅&#xff0c;一路也是磕磕绊绊的在工作中使用k8s。 终于在23年的6月仲…

【办公软件】电脑开机密码忘记了如何重置?

这个案例是家人的电脑&#xff0c;已经使用多年&#xff0c;又是有小孩操作过的&#xff0c;所以电脑密码根本不记得是什么了&#xff1f;那难道这台电脑就废了吗&#xff1f;需要重新装机吗&#xff1f;那里面的资料不是没有了&#xff1f; 为了解决以上问题&#xff0c;一般…

编程语言发展史:Python语言的兴起和特点

预计更新 第一部分&#xff1a;早期编程语言 1.1布尔代数和机器语言 1.2汇编语言的出现和发展 1.3高级语言的兴起 第二部分&#xff1a;主流编程语言 1.1 C语言的诞生及其影响 1.2 C语言的发展和应用 1.3 Java语言的出现和发展 1.4 Python语言的兴起和特点 1.5 JavaScript语言…

技术前沿探索:人工智能与大数据融合的未来

技术前沿探索&#xff1a;人工智能与大数据融合的未来 摘要&#xff1a;本博客将探讨人工智能与大数据融合领域的最新技术趋势、前沿研究方向以及挑战与机遇。通过介绍相关技术和案例&#xff0c;我们希望激发读者对这一领域的兴趣&#xff0c;并为其职业发展提供有益参考。 一…

万字解析设计模式之模板方法与解释器模式

一、模板方法模式 1.1概述 定义一个操作中算法的框架&#xff0c;而将一些步骤延迟到子类中&#xff0c;模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。 例如&#xff0c;去银行办理业务一般要经过以下4个流程&#xff1a;取号、排队、办理具体业…

ubuntu22.04安装swagboot遇到的问题

一、基本情况 系统&#xff1a;u 22.04 python&#xff1a; 3.10 二、问题描述 swagboot官方提供的安装路径言简意赅:python3 -m pip install --user snagboot 当然安装python3和pip是基本常识&#xff0c;这里就不再赘述。 可是在安装的时候出现如下提示说 Failed buildin…

qt pdf 模块简介

文章目录 1. 技术平台2. Qt pdf 模块3. cmake 使用模块4. 许可证5. 简单示例5.1 CMakeLists.txt5.2 main.cpp 6. 总结 1. 技术平台 项目说明OSwin10 x64Qt6.6compilermsvc2022构建工具cmake 2. Qt pdf 模块 Qt PDF模块包含用于呈现PDF文档的类和函数。 QPdfDocument 类加载P…