ElasticSearch02

ElasticSearch客户端操作

ElasticSearch
版本:7.8 学习视频:尚硅谷
笔记:https://zgtsky.top/

实际开发中,主要有三种方式可以作为elasticsearch服务的客户端:

  • 第一种,使用elasticsearch提供的Restful接口直接访问

  • 第二种,elasticsearch-head插件

  • 第三种,使用elasticsearch提供的API进行访问

ElasticSearch的接口语法

image-20231126135233782

Elasticsearch提供了基于JSON的完整查询DSL(Domain Specific Language领域特定语言)来定义查询。将查询DSL视为查询的AST(抽象语法树),它由两种子句组成:

  • 叶子查询子句:

​ 叶查询子句中寻找一个特定的值在某一特定领域,如 match,term或 range查询。这些查询可以自己使用。

  • 复合查询子句

​ 复合查询子句包装其他叶查询或复合查询,并用于以逻辑方式组合多个查询(例如 bool或dis_max查询),或更改其行为(例如 constant_score查询)。

我们在使用ElasticSearch的时候,避免不了使用DSL语句去查询,就像使用关系型数据库的时候要学会SQL语法一样。如果我们学习好了DSL语法的使用,那么在日后使用和使用Java Client调用时候也会变得非常简单。

Postman

操作索引 index

image-20231126135456262

创建索引

请求url:put localhost:9200/blog

发送请求,响应数据

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

elasticsearch-head查看:请求localhost:9200

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

image-20231126135649912

如果重复创建索引,会报错:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

查看索引

get localhost:9200/log

image-20231126140108689

删除索引

delete localhost:9200/blog

image-20231126140200112

关闭索引

post localhost:9200/blog/_close

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

打开索引

post localhost:9200/blog/_open

image-20231126140400279

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

创建索引index并且进行映射mapping

请求url :PUT	localhost:9200/blog1请求体:{"mappings": {"properties": {"id": {"type": "long","store": true,"index":true},"title": {"type": "text","store": true,"index":true,"analyzer":"standard"},"content": {"type": "text","store": true,"index":true,"analyzer":"standard"}}}
}

注意:

  1. key需要使用双引号,不可以省略

  2. mappings、properties等都是关键字,区分大小写

  3. mapping中的字段类型一旦设置,禁止直接修改,因为 lucene实现的倒排索引生成后不允许修改,应该重新建立新的索引,然后做reindex操作。

  4. 如果没有mapping所有text类型属性默认都使用standard分词器。所以如果希望使用IK分词就必须配置自定义mapping。

  5. store含义:默认false。当某个数据字段很大,我们可以指定其它字段store为true,这样就不用从_source中取数据。 store 的意思是,是否在 _source 之外在独立存储一份。当你索引数据的时候, elasticsearch 会保存一份源文档到 _source ,如果文档的某一字段设置了 store 为 true,这时候会在 _source 存储之外再为这个字段独立进行存储,这么做的目的主要是针对内容比较多的字段,放到 _source 返回的话,因为_source 是把所有字段保存为一份文档,命中后读取只需要一次IO,包含内容特别多的字段会很占带宽影响性能,通常我们也不需要完整的内容返回(可能只关心摘要),这时候就没必要放到 _source 里一起返回了(当然也可以在查询时指定返回字段)。

  6. index含义:默认值是true。es默认大多数及常用数据字段类型就是索引的,这也是es职责之所在,但是有时会有部分字段只是做存储,不做检索,这也会提高es性能。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

elasticsearch-head查看:

image-20231126140945584

kibana

操作索引和映射

# 创建索引
PUT person
# 查询索引
GET person
# 删除索引
DELETE person# 查询映射
GET person/_mapping# 添加映射
PUT person/_mapping
{"properties":{"name":{"type":"keyword"},"age":{"type":"integer"}}
}
# ------------------------------------------------
# 创建索引并添加映射
PUT person
{"mappings": {"properties": {"name":{"type": "keyword"},"age":{"type":"integer"}}}
}
# 索引库中添加字段
PUT person/_mapping
{"properties":{"address":{"type":"text"}}
}
# 判断索引是否存在
HEAD person

打开kibana,在此操作。前提是elasticsearch也在开着。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

操作文档document

• 添加文档
• 查询文档
• 修改文档
• 删除文档

• 判断文档是否存在

# 查询索引
GET person# 添加文档,指定id
PUT person/_doc/1
{"name":"张三","age":20,"address":"深圳宝安区"
}# 查询文档
GET person/_doc/1# 添加文档,不指定id,自动生成id
POST person/_doc/
{"name":"李四","age":20,"address":"深圳南山区"
}
# 查询文档
GET person/_doc/u8b2QHUBCR3n8iTZ8-Vk# 添加文档,不指定id,自动生成id
POST person/_doc
{"name":"李四","age":20,"address":"深圳南山区"
}
# 查询文档
GET person/_doc/u8b2QHUBCR3n8iTZ8-Vk# 查询所有文档
GET person/_search# 删除文档
DELETE person/_doc/1# 修改文档 根据id,id存在就是修改,id不指定报405请求方式不支持,使用POST方式
PUT person/_doc/2
{"name":"硅谷","age":20,"address":"深圳福田保税区"
}
#如果我们只需要判断文档是否存在,而不是查询文档内容,那么可以这样:
HEAD  shangguigu/_doc/1001
#存在返回:200 - OK
#不存在返回:404 – Not Found

注意:

put:id存在是修改(以现在提供字段为全部字段),id不存在是添加

post:id存在是添加,id不存在自动生成id,

查询全部

GET  person/_search
GET person/_search
{"query": {"match_all": {}}
}

全文查询-match查询

全文查询会分析查询条件,先将查询条件进行分词,然后查询,求并集

# match 先会对查询的字符串进行分词,在查询,求并集
GET person/_search
{"query": {"match": {"address": "深圳保税区"}}
}

结果按照得分进行排序

image-20231126143339113

查询文档-term查询

词条查询不会分析查询条件,只有当词条和查询字符串完全匹配时才匹配搜索term主要用于精确匹配哪些值,比如数字,日期,布尔值或 not_analyzed 的字符串(未经分析的文本数据类型)

# 查询所有数据
GET person/_search# 查询 带某词条的数据
GET person/_search
{"query": {"term": {"address": {"value": "深圳南山区"}}}
}

这个结果与使用的分词器有关。根据address字段,建立倒排索引时,需要对其分词,产生多个词条,而词条集合中没有"深圳南山区"的词条,故而查询不到数据。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

大家可以查询“深”或“南山区”或“深圳”试试。

这里之前没有指定ik分词器,所以中文都是一个一个的,此处用 深 可以查出。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

注意:

默认情况下,hits.total.value是不确切的命中计数,当hits.total.relation的值是eq时,hits.total.value的值是准确计数。

当hits.total.relation的值是gte时,hits.total.value的值是不准确的。

hits.hits 是存储搜索结果的实际数组(默认为前10个文档)

terms查询

terms 跟 term 有点类似,但 terms 允许指定多个匹配条件。 如果某个字段指定了多个值,那么文档需要一起去做匹配:

POST person/_search
{"query" : {"terms" : { "age" : [20,21]}}
}

exists 查询

exists 查询可以用于查找文档中是否包含指定字段或没有某个字段,类似于SQL语句中的 IS_NULL 条件

# "exists":  必须包含
POST person/_search
{"query": {"exists": { "field": "name"}}
}

range查询

range 过滤允许我们按照指定范围查找一批数据:

范围操作符包含:

gt :: 大于

gte :: 大于等于

lt :: 小于

lte :: 小于等于

POST person/_search
{"query": {"range": {"age": {"gte": 20,"lte": 22}}}
}

复合查询(bool)

复合查询就是多条件查询

GET 索引名/类型名/_search
{"query": {"bool": {"must": [ #数组中的多个条件必须同时满足{"range": {"字段名": {"lt": 条件}}}],"must_not":[ #数组中的多个条件必须都不满足{"match": {"字段名": "条件"}},{"range": {"字段名": {"gte": "搜索条件"}}}],"should": [# 数组中的多个条件有任意一个满足即可。{"match": {"字段名": "条件"}},{"range": {"字段名": {"gte": "搜索条件"}}}]}}
}

bool 可以用来合并多个过滤条件查询结果的布尔逻辑,它包含这如下几个操作符:

· must : 多个查询条件的完全匹配,相当于 and,有评分。

· filter: 多个查询条件的完全匹配,相当于 and,无评分。

· must_not ::多个查询条件的相反匹配,相当于 not。

· should : 至少有一个查询条件匹配, 相当于 or。

多添加数据,方便展示

PUT  person/_doc/1001
{"id":"1001","name":"张三","age":20,"sex":"男"
}
PUT  person/_doc/1002
{"id":"1002","name":"李四","age":25,"sex":"女"
}PUT  person/_doc/1003
{"id":"1003","name":"王五","age":30,"sex":"女"
}PUT  person/_doc/1004
{"id":"1004","name":"赵六","age":30,"sex":"男"
}GET person/_search

复合查询示例:

GET shangguigu/_search
{"query": {"bool": {"must": [{"range": {"age": {"gte": 25,"lte": 33}}},{"term": {"sex": {"value": "女"}}}],"must_not": [{"match": {"name": "王五"}}],"should": [{"exists": {"field": "address"}}]}}
}

image-20231126145358947

高亮显示

在浏览器搜索时,我们搜索的关键词汇,在给出的搜索列表里对应的词汇会高亮。

GET  person/_search
{"query":{"match":{"name": "张三 李四"}},"highlight": {"fields": {"name": {}}}
}

扩展:可以自定义高亮的样式:

“pre_tags”: “”,

“post_tags”: “”

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

自定义样式

image-20231126145829026

指定响应字段

在响应的数据中,如果我们不需要全部的字段,可以指定某些需要的字段进行返回

GET  person/_doc/1001?_source=id,name等价于GET /person/_search
{"query": {"match": {"id": "1001"}},"_source": ["id","name"]
}

image-20231126150001030

聚合

在Elasticsearch中,支持聚合操作,类似SQL中的group by操作。

注意:

"all_ages"名称是任意的。

GET  person/_search
{"aggs": {"all_ages": {"terms": {"field": "age"}}}
}

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果聚合查询报错:在es中,text类型的字段使用一种叫做fielddata的查询时内存数据结构。当字段被排序,聚合或者通过脚本访问时这种数据结构会被创建。它是通过从磁盘读取每个段的整个反向索引来构建的,然后存存储在java的堆内存中。fileddata默认是不开启的。Fielddata可能会消耗大量的堆空间,尤其是在加载高基数文本字段时。一旦fielddata已加载到堆中,它将在该段的生命周期内保留。此外,加载fielddata是一个昂贵的过程,可能会导致用户遇到延迟命中。这就是默认情况下禁用fielddata的原因。如果尝试对文本字段进行排序,聚合或脚本访问,将看到以下异常:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

修改后的语句:

{"aggs": {"all_ages": {"terms": {"field": "age.keyword"}}}
}

批量操作

有些情况下可以通过批量操作以减少网络请求。如:批量查询、批量插入数据。

  • 批量查询
POST  person/_doc/_mget
{"ids" : [ "1001", "1003" ]
}

image-20231126150638064

​ 如果,某一条数据不存在,不影响整体响应,需要通过found的值进行判断是否查询到数据。

1006 不存在

{"ids" : [ "1001", "1006" ]
}

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • _bulk操作

在Elasticsearch中,支持批量的插入、修改、删除操作,都是通过_bulk的api完成的。

请求格式如下:(请求格式不同寻常)

不要有多余的空行

{ action: { metadata }}\n
{ request body    }\n
{ action: { metadata }}\n
{ request body    }\n
...

批量插入:

POST _bulk
{"create":{"_index":"person","_id":2001}}
{"id":2001,"name":"name1","age": 20,"sex": "男"}
{"create":{"_index":"person","_id":2002}}
{"id":2002,"name":"name2","age": 20,"sex": "男"}
{"create":{"_index":"person","_id":2003}}
{"id":2003,"name":"name3","age": 20,"sex": "男"}

批量删除:

由于delete没有请求体,所以,action的下一行直接就是下一个action。

POST _bulk
{"delete":{"_index":"atguigu","_id":2001}}
{"delete":{"_index":"atguigu","_id":2002}}
{"delete":{"_index":"atguigu","_id":2003}}

分页

和SQL使用 LIMIT 关键字返回只有一页的结果一样,Elasticsearch接受 from 和 size 参数:

插入数据:

size: 结果数,默认10
from: 跳过开始的结果数,默认0
POST person/_bulk
{"index":{"_index":"person"}}
{"name":"张三","age": 20,"mail": "111@qq.com","hobby":"羽毛球、乒乓球、足球"}
{"index":{"_index":"person"}}
{"name":"李四","age": 21,"mail": "222@qq.com","hobby":"羽毛球、乒乓球、足球、篮球"}
{"index":{"_index":"person"}}
{"name":"王五","age": 22,"mail": "333@qq.com","hobby":"羽毛球、篮球、游泳、听音乐"}
{"index":{"_index":"person"}}
{"name":"赵六","age": 23,"mail": "444@qq.com","hobby":"跑步、游泳"}
{"index":{"_index":"person"}}
{"name":"孙七","age": 24,"mail": "555@qq.com","hobby":"听音乐、看电影"}

测试分页:

POST person/_search
{"query" : {"match" : { "hobby" : "音乐 羽毛球"}},"from": 0,"size": 2
}

注意事项:批量操作中index和create区别

  • index 和 create 都会检查 _version 版本号。
  • index 插入时分两种情况:
    • 没有指定 _version,那对于已有的doc,_version会递增,并对文档覆盖。
    • 指定_version,如果与已有的文档 _version 不相等,则插入失败;如果相等则覆盖,_version递增。
  • create 插入时对于已有的文档,不会创建新文档,即插入失败,会抛出一个已经存在的异常。

通过查询字符串搜索数据

ElasticSearch除了提供DSL查询语法之外,还提供了query string search。

query string search:search的参数都是类似http请求头中的字符串参数提供搜索条件的。GET [/index_name/]_search[?parameter_name=parameter_value&…]

query DSL:请求参数以JSON形式提供,是在请求体传递的。在Elasticsearch中,请求体的字符集默认为UTF-8。

# 查询名字等于张三的用户
GET  person/_search?q=name:张三
# 查询所有字段中带张三的用户
GET  person/_search?q=张三

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果你想每页显示5个结果,页码从1到3,那请求如下:

GET person/_search?size=5
GET person/_search?size=5&from=5
GET person/_search?size=5&from=10

排序:

GET person/_search?size=1&from=2
GET person/_search?sort=age:desc
GET person/_search?size=5&sort=age:desc

重建索引

随着业务需求的变更,索引的结构可能发生改变。

ElasticSearch的索引一旦创建,只允许添加字段,不允许改变字段。因为改变字段,需要重建倒排索引,影响内部缓存结构,性能太低。

那么此时,就需要重建一个新的索引,并将原有索引的数据导入到新索引中。

原索引库 :student_index_v1

新索引库 :student_index_v2

# 新建student_index_v1索引,索引名称必须全部小写
PUT student_index_v1 
{"mappings": {"properties": {"birthday":{"type": "date"}}}
}
# 查询索引
GET student_index_v1
# 添加数据
PUT student_index_v1/_doc/1
{"birthday":"2020-11-11"
}
# 查询数据
GET student_index_v1/_search
# 随着业务的变更,换种数据类型进行添加数据,程序会直接报错
PUT student_index_v1/_doc/1
{"birthday":"2020年11月11号"
}
# 业务变更,需要改变birthday数据类型为text
# 1:创建新的索引 student_index_v2
# 2:将student_index_v1 数据拷贝到 student_index_v2# 创建新的索引
PUT student_index_v2 
{"mappings": {"properties": {"birthday":{"type": "text"}}}
}DELETE student_index_v2
# 2:将student_index_v1 数据拷贝到 student_index_v2
POST _reindex
{"source": {"index": "student_index_v1"},"dest": {"index": "student_index_v2"}
}
# 查询新索引库数据
GET student_index_v2/_search
# 在新的索引库里面添加数据
PUT student_index_v2/_doc/2
{"birthday":"2020年11月13号"
}

ElasticSearch集群搭建

相关概念

单节点故障问题

  • 单台服务器,往往都有最大的负载能力,超过这个阈值,服务器性能就会大大降低甚至不可用。单点的elasticsearch也是一样,那单点的es服务器存在哪些可能出现的问题呢?

    • 单台机器存储容量有限

    • 单服务器容易出现单点故障,无法实现高可用

    • 单服务的并发处理能力有限

​ 所以,为了应对这些问题,我们需要对elasticsearch搭建集群

  • 集群中节点数量没有限制,大于等于2个节点就可以看做是集群了。一般出于高性能及高可用方面来考虑集群中节点数量都是3个以上。

集群的相关概念

**1)**集群 cluster

一个集群就是由一个或多个节点组织在一起,它们共同持有整个的数据,并一起提供索引和搜索功能。一个集群由一个唯一的名字标识,这个名字默认就是“elasticsearch”。这个名字是重要的,因为一个节点只能通过指定某个集群的名字,来

加入这个集群。

2) 节点 node

一个节点是集群中的一个服务器,作为集群的一部分,它存储数据,参与集群的索引和搜索功能。

一个节点也是由一个名字来标识的,默认情况下,这个名字是一个随机的漫威漫画角色的名字,这个名字会在启动的时候赋予节点。这个名字对于管理工作来说挺重要的,因为在这个管理过程中,你会去确定网络中的哪些服务器对应于

ElasticSearch集群中的哪些节点。

一个节点可以通过配置集群名称的方式来加入一个指定的集群。默认情况下,每个节点都会被安排加入到一个叫做“elasticsearch”的集群中,这意味着,如果你在你的网络中启动了若干个节点,并假定它们能够相互发现彼此,它们将会自动地

形成并加入到一个叫做“elasticsearch”的集群中。

在一个集群里,只要你想,可以拥有任意多个节点。而且,如果当前你的网络中没有运行任何Elasticsearch节点,这时启动一个节点,会默认创建并加入一个叫做“elasticsearch”的集群。

分片和复制 shards&replicas

一个索引可以存储超出单个节点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。为了解决这个问题,ElasticSearch提供了将索引划分

成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。

分片很重要,主要有两方面的原因:

1)允许你水平分割/扩展你的内容容量。

2)允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量。

至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ElasticSearch管理的,对于作为用户的你来说,这些都是透明的。

在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ElasticSearch允许你创建分片的一份或多

份拷贝,这些拷贝叫做复制分片( 副本)。

复制之所以重要,有两个主要原因: 在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上

并行运行。

总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指

定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是存储数据后不能改变分片的数量。

默认情况下:

Elasticsearch6.x中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。

Elasticsearch7.x中的每个索引被分片1个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有1个主分片和另外1个复制分片(1个完全拷贝),这样的话每个索引总共就有2个分片。

image-20231126152922677

集群搭建

  • 准备三台elasticsearch服务器

创建elasticsearch-cluster文件夹,在内部复制三个elasticsearch服务

  • 修改每台服务器配置

    修改elasticsearch-cluster\node*\config\elasticsearch.yml配置文件

    node1节点:按照(新)的来,discovery.zen.ping.unicast.hosts这个参数用discovery.seed_hosts替换

    #节点1的配置信息:
    #集群名称,保证唯一
    cluster.name: my-elasticsearch

    #默认为true。设置为false禁用磁盘分配决定器。

    cluster.routing.allocation.disk.threshold_enabled: false

    #节点名称,必须不一样
    node.name: node-1
    #必须为本机的ip地址
    network.host: 127.0.0.1
    #服务端口号,在同一机器下必须不一样
    http.port: 9201
    #集群间通信端口号,在同一机器下必须不一样
    transport.tcp.port: 9301
    #设置集群自动发现机器ip集合
    #discovery.zen.ping.unicast.hosts: [“127.0.0.1:9301”,“127.0.0.1:9302”,“127.0.0.1:9303”]

    #(新)

    # es7.x 之后新增的配置,写入候选主节点的设备地址,在开启服务后可以被选为主节点

    # es7之后,不需要上面discovery.zen.ping.unicast.hosts这个参数,用discovery.seed_hosts替换

    # discovery.zen.ping.unicast.hosts: [“10.19.1.9:9200”,“10.19.1.10:9200”,“10.19.1.11:9200”]

    discovery.seed_hosts: [“127.0.0.1:9301”,“127.0.0.1:9302”,“127.0.0.1:9303”]

    # es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举master

    cluster.initial_master_nodes: [“node-1”]

    node2节点:

    #节点2的配置信息:
    #集群名称,保证唯一
    cluster.name: my-elasticsearch

    #默认为true。设置为false禁用磁盘分配决定器。

    cluster.routing.allocation.disk.threshold_enabled: false

    #节点名称,必须不一样
    node.name: node-2
    #必须为本机的ip地址
    network.host: 127.0.0.1
    #服务端口号,在同一机器下必须不一样
    http.port: 9202
    #集群间通信端口号,在同一机器下必须不一样
    transport.tcp.port: 9302
    #设置集群自动发现机器ip集合
    #discovery.zen.ping.unicast.hosts: [“127.0.0.1:9301”,“127.0.0.1:9302”,“127.0.0.1:9303”]

    #(新)

    # es7.x 之后新增的配置,写入候选主节点的设备地址,在开启服务后可以被选为主节点

    # es7之后,不需要上面discovery.zen.ping.unicast.hosts这个参数,用discovery.seed_hosts替换

    # discovery.zen.ping.unicast.hosts: [“10.19.1.9:9200”,“10.19.1.10:9200”,“10.19.1.11:9200”]

    discovery.seed_hosts: [“127.0.0.1:9301”,“127.0.0.1:9302”,“127.0.0.1:9303”]

    # es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举master

    cluster.initial_master_nodes: [“node-1”]

    node3节点:

    #节点3的配置信息:
    #集群名称,保证唯一
    cluster.name: my-elasticsearch

    #默认为true。设置为false禁用磁盘分配决定器。

    cluster.routing.allocation.disk.threshold_enabled: false

    #节点名称,必须不一样
    node.name: node-3
    #必须为本机的ip地址
    network.host: 127.0.0.1
    #服务端口号,在同一机器下必须不一样
    http.port: 9203
    #集群间通信端口号,在同一机器下必须不一样
    transport.tcp.port: 9303
    #设置集群自动发现机器ip集合
    #discovery.zen.ping.unicast.hosts: [“127.0.0.1:9301”,“127.0.0.1:9302”,“127.0.0.1:9303”]

    #(新)

    # es7.x 之后新增的配置,写入候选主节点的设备地址,在开启服务后可以被选为主节点

    # es7之后,不需要上面discovery.zen.ping.unicast.hosts这个参数,用discovery.seed_hosts替换

    # discovery.zen.ping.unicast.hosts: [“10.19.1.9:9200”,“10.19.1.10:9200”,“10.19.1.11:9200”]

    discovery.seed_hosts: [“127.0.0.1:9301”,“127.0.0.1:9302”,“127.0.0.1:9303”]

    # es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举master

    cluster.initial_master_nodes: [“node-1”]

  • 启动各个节点服务器

先清理掉之前数据:删除elasticsearch-cluster\node*\data目录下的nodes目录 这个目录很有必要删除,没删除时,集群不成功,elasticsearch head插口看不到集群

在各个节点安装ik分词器

双击elasticsearch-cluster\node*\bin\elasticsearch.bat

启动节点1:

启动节点2:

启动节点3:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

集群测试

  • 使用elasticsearch-head查看集群情况

地址栏通过http://localhost:9201/,http://localhost:9202/,http://localhost:9203分别查看集群中节点情况。

image-20231126154430326

浏览器elasticsearch head插件中通过http://localhost:9201/,http://localhost:9202/,http://localhost:9203分别访问集群。可以看到3个节点,一切正常(绿色)。没有任何索引。

image-20231126154807783

  • 安装kibana连接集群

修改kibana的conf/kibana.yml中配置

#elasticsearch.hosts: [“http://localhost:9200”]

elasticsearch.hosts: [“http://localhost:9201”,“http://localhost:9202”,“http://localhost:9203”]

双击bin/kibana.bat确定kibana。

再次通过浏览器elasticsearch head插件访问集群

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 集群测试

创建索引及映射

# 请求方法:PUT
PUT /shopping
{"settings": {},"mappings": {"properties": {"title":{"type": "text","analyzer": "ik_max_word"},"subtitle":{"type": "text","analyzer": "ik_max_word"},"images":{"type": "keyword","index": false},"price":{"type": "float","index": true}}}
}

添加文档

POST /shopping/_doc/1
{"title":"小米手机","images":"http://www.gulixueyuan.com/xm.jpg","price":3999.00
}
  • 再次使用elasticsearch-head查看集群情况

GET _cluster/health

{

“cluster_name” : “my-jio”,

“status” : “green”,

“timed_out” : false,

“number_of_nodes” : 3,

“number_of_data_nodes” : 3,

“active_primary_shards” : 7,

“active_shards” : 14,

“relocating_shards” : 0,

“initializing_shards” : 0,

“unassigned_shards” : 0,

“delayed_unassigned_shards” : 0,

“number_of_pending_tasks” : 0,

“number_of_in_flight_fetch” : 0,

“task_max_waiting_in_queue_millis” : 0,

“active_shards_percent_as_number” : 100.0

}

  • Elasticsearch-head查看:

image-20231126155915459

服务器运行状态:

Green

所有的主分片和副本分片都已分配。你的集群是 100% 可用的。

yellow

所有的主分片已经分片了,但至少还有一个副本是缺失的。不会有数据丢失,所以搜索结果依然是完整的。不过,你的高可用性在某种程度上被弱化。如果 更多的 分片消失,你就会丢数据了。把 yellow 想象成一个需要及时调查的警告。

red

至少一个主分片(以及它的全部副本)都在缺失中。这意味着你在缺少数据:搜索只能返回部分数据,而分配到这个分片上的写入请求会返回一个异常。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/172004.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端学习--React(4)路由

一、认识ReactRouter 一个路径path对应一个组件component,当我们在浏览器中访问一个path,对应的组件会在页面进行渲染 创建路由项目 // 创建项目 npx create router-demo// 安装路由依赖包 npm i react-router-dom// 启动项目 npm run start 简单的路…

小程序项目:springboot+vue基本微信小程序的电子书阅读器小程序

项目介绍 随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,各行各业相继进入信息管理时…

ArcGIS制作广场游客聚集状态及密度图

文章目录 一、加载实验数据二、平均最近邻法介绍1. 平均最近邻工具2. 广场游客聚集状态3. 结果分析三、游客密度制图一、加载实验数据 二、平均最近邻法介绍 1. 平均最近邻工具 “平均最近邻”工具将返回五个值:“平均观测距离”、“预期平均距离”、“最近邻指数”、z 得分和…

黑马点评Redis笔记

黑马点评Redis笔记 Redis基础篇:https://cyborg2077.github.io/2022/10/21/RedisBasic/ Redis实战篇:https://cyborg2077.github.io/2022/10/22/RedisPractice/ 一、手机号验证码注册登录 RandomUtil 生成定长随机数列 String code RandomUtil.ran…

4.一维数组——用数组处理求Fibonacci数列前20项

文章目录 前言一、题目描述 二、题目分析 三、解题 程序运行代码 四、结果显示 前言 本系列为一维数组编程题,点滴成长,一起逆袭。 一、题目描述 用数组处理求Fibonacci数列前20项 二、题目分析 前两项:f[20]{1,1} 后18项:for(…

2022年全国硕士研究生入学统一考试管理类专业学位联考数学试题——解析版

文章目录 2022 年全国硕士研究生入学统一考试管理类专业学位联考数学试题一、问题求解:第 1∼15 小题,每小题 3 分,共 45 分。下列每题给出的 A、B、C、D、E 五个选项中,只有一项是符合试题要求的,请在答.题…

1panel在应用商店里面安装jenkins

文章目录 目录 文章目录 前言 一、使用步骤 1.1 填写安装参数 1.2 在界面中进入容器拿到自动生成的jenkins密码 前言 一、使用步骤 1.1 填写安装参数 在应用商店里面搜索jenkins,然后点击安装 填写参数 1.2 在界面中进入容器拿到自动生成的jenkins密码 命令 cat /var/jenki…

Go 本地搭建playground

搭建go playground 的步骤 1、安装docker 如果你使用的Ubuntu,docker的安装步骤可以参见这里,这是我之前写的在Ubuntu18.04下安装fabric,其中有docker的安装步骤,这里就不再赘述了。 CentOS下安装docker的,可以参见…

《数据结构、算法与应用C++语言描述》-二叉树与其他树-二叉树的C++实现-设置信号放大器与并查集问题

二叉树和其他树 可编译运行程序见:Github::Jasmine-up/Data-Structures-Algorithms-and-Applications/_23BinaryTree 定义 树 定义 11-1 一棵树 t是一个非空的有限元素的集合,其中一个元素为根(root),其余的元素&a…

04_MySQL备份与恢复

任务背景 一、真实案例 某天,公司领导安排刚入职不久的小冯同学将生产环境中的数据(MySQL数据库)全部导入到测试环境给测试人员使用。当小冯去拿备份数据时发现,备份数据是1个礼拜之前的。原因是之前运维同事通过脚本每天对数据库进行备份,…

51单片机蜂鸣器发出悦耳的声音

51单片机蜂鸣器发出悦耳的声音 1.概述 这篇文章介绍单片机控制蜂鸣器入门小实验,通过该实验掌握蜂鸣器发声的原理,控制声音发出我们想听的音乐。 2.蜂鸣器发声 2.1.硬件原理 1.蜂鸣器正极接单片机20号引脚VCC,负极接19号引脚P1.7 2.20MH…

【数据处理】 -- 【两分钟】了解【最好】的方式 -- 【正则表达式】

直接匹配; 普通字符 元匹配: . 任意单字符 r’表示单引号里字符为其特殊含义,比如.不是句号是匹配符的意思 *任意次数(换行结束) 一次及以上 {3,4}指定次数,至少3次,最多4次|{3}固定4次 [\d.]单个任意…

Kotlin学习——kt里的作用域函数scope function,let,run,with,apply,also

Kotlin 是一门现代但已成熟的编程语言,旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作,并提供了多种方式在多个平台间复用代码,以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…

什么是分布式锁?Redis实现分布式锁详解

目录 前言: 分布式系统买票示例 引入redis做分布式锁 引入过期时间 引入校验id 引入lua脚本 过期时间续约问题 redlock算法 小结: 前言: 在分布式系统中,涉及多个主机访问同一块资源,此时就需要锁来做互斥控制…

【Java】线程池的简单实用

1、什么是线程池 Java当中,为了规避频繁创建调度进程的开销,我们引入了线程。但是如果进一步提高创建销毁频率,线程的开销也不容忽视。 对此我们有两个解决方案 协程(轻量级线程):相比线程,把…

大数据平台/大数据技术与原理-实验报告--部署全分布模式Hadoop集群

实验名称 部署全分布模式Hadoop集群 实验性质 (必修、选修) 必修 实验类型(验证、设计、创新、综合) 综合 实验课时 2 实验日期 2023.10.16-2023.10.20 实验仪器设备以及实验软硬件要求 专业实验室(配有cen…

6.4 Windows驱动开发:内核枚举DpcTimer定时器

在操作系统内核中,DPC(Deferred Procedure Call)是一种延迟执行的过程调用机制,用于在中断服务例程(ISR)的上下文之外执行一些工作。DPC定时器是基于DPC机制的一种定时执行任务的方式。 DPC定时器的主要特…

Namecheap怎么样,Namecheap优惠码以及注册手把手教程

Namecheap 是一家成熟的服务器域名托管公司,可以为合适的客户提供良好的解决方案。这些优点和缺点应该让您清楚地了解您的期望,以便您知道这是否是您网站的正确选择。 Namecheap怎么样? 已成立的公司: Namecheap 已经营 20 多年…

【代码随想录刷题】Day18 二叉树05------延伸题目练习

文章目录 1.【113】路径总和II1.1 题目描述1.2 解题思路1.3 java代码实现 2.【105】从前序与中序遍历序列构造二叉树2.1 题目描述2.2 java代码实现 【113】路径总和II 【105】从前序与中序遍历序列构造二叉树 1.【113】路径总和II 1.1 题目描述 给你二叉树的根节点 root 和一…

Vscode工具使用指南

通用 快捷键文件 / 编辑查找 / 替换窗口插件主题 连接linux 快捷键 文件 / 编辑 新建文件:CtrlN放大或缩小:Ctrl /-代码行缩进,展开:Ctrl[ 和 Ctrl]在当前行下方插入一行:CtrlEnter在当前行上方插入一行:…