【深度学习】如何找到最优学习率

经过了大量炼丹的同学都知道,超参数是一个非常玄乎的东西,比如batch size,学习率等,这些东西的设定并没有什么规律和原因,论文中设定的超参数一般都是靠经验决定的。但是超参数往往又特别重要,比如学习率,如果设置了一个太大的学习率,那么loss就爆了,设置的学习率太小,需要等待的时间就特别长,那么我们是否有一个科学的办法来决定我们的初始学习率呢?

在这篇文章中,我会讲一种非常简单却有效的方法来确定合理的初始学习率。

学习率的重要性

目前深度学习使用的都是非常简单的一阶收敛算法,梯度下降法,不管有多少自适应的优化算法,本质上都是对梯度下降法的各种变形,所以初始学习率对深层网络的收敛起着决定性的作用,下面就是梯度下降法的公式

深度学习:如何找到最优学习率

这里 α 就是学习率,如果学习率太小,会导致网络loss下降非常慢,如果学习率太大,那么参数更新的幅度就非常大,就会导致网络收敛到局部最优点,或者loss直接开始增加,如下图所示。

深度学习:如何找到最优学习率

学习率的选择策略在网络的训练过程中是不断在变化的,在刚开始的时候,参数比较随机,所以我们应该选择相对较大的学习率,这样loss下降更快;当训练一段时间之后,参数的更新就应该有更小的幅度,所以学习率一般会做衰减,衰减的方式也非常多,比如到一定的步数将学习率乘上0.1,也有指数衰减等。

这里我们关心的一个问题是初始学习率如何确定,当然有很多办法,一个比较笨的方法就是从0.0001开始尝试,然后用0.001,每个量级的学习率都去跑一下网络,然后观察一下loss的情况,选择一个相对合理的学习率,但是这种方法太耗时间了,能不能有一个更简单有效的办法呢?

一个简单的办法

Leslie N. Smith 在2015年的一篇论文“Cyclical Learning Rates for Training Neural Networks”中的3.3节描述了一个非常棒的方法来找初始学习率,同时推荐大家去看看这篇论文,有一些非常启发性的学习率设置想法。

这个方法在论文中是用来估计网络允许的最小学习率和最大学习率,我们也可以用来找我们的最优初始学习率,方法非常简单。首先我们设置一个非常小的初始学习率,比如1e-5,然后在每个batch之后都更新网络,同时增加学习率,统计每个batch计算出的loss。最后我们可以描绘出学习的变化曲线和loss的变化曲线,从中就能够发现最好的学习率。

下面就是随着迭代次数的增加,学习率不断增加的曲线,以及不同的学习率对应的loss的曲线。

深度学习:如何找到最优学习率
深度学习:如何找到最优学习率

从上面的图片可以看到,随着学习率由小不断变大的过程,网络的loss也会从一个相对大的位置变到一个较小的位置,同时又会增大,这也就对应于我们说的学习率太小,loss下降太慢,学习率太大,loss有可能反而增大的情况。从上面的图中我们就能够找到一个相对合理的初始学习率,0.1。

之所以上面的方法可以work,因为小的学习率对参数更新的影响相对于大的学习率来讲是非常小的,比如第一次迭代的时候学习率是1e-5,参数进行了更新,然后进入第二次迭代,学习率变成了5e-5,参数又进行了更新,那么这一次参数的更新可以看作是在最原始的参数上进行的,而之后的学习率更大,参数的更新幅度相对于前面来讲会更大,所以都可以看作是在原始的参数上进行更新的。正是因为这个原因,学习率设置要从小变到大,而如果学习率设置反过来,从大变到小,那么loss曲线就完全没有意义了。

实现

上面已经说明了算法的思想,说白了其实是非常简单的,就是不断地迭代,每次迭代学习率都不同,同时记录下来所有的loss,绘制成曲线就可以了。下面就是使用PyTorch实现的代码,因为在网络的迭代过程中学习率会不断地变化,而PyTorch的optim里面并没有把learning rate的接口暴露出来,导致显示修改学习率非常麻烦,所以我重新写了一个更加高层的包mxtorch,借鉴了gluon的一些优点,在定义层的时候暴露初始化方法,支持tensorboard,同时增加了大量的model zoo,包括inceptionresnetv2,resnext等等,提供预训练权重,model zoo参考于Cadene的repo。目前这个repo刚刚开始,欢迎有兴趣的小伙伴加入我。

下面就是部分代码,近期会把找学习率的代码合并到mxtorch中。这里使用的数据集是kaggle上的dog breed,使用预训练的resnet50,ScheduledOptim的源码点这里。

   
  1. criterion = torch.nn.CrossEntropyLoss()
  2. net = model_zoo.resnet50(pretrained=True)
  3. net.fc = nn.Linear(2048, 120)
  4.  
  5. with torch.cuda.device(0):
  6. net = net.cuda()
  7.  
  8. basic_optim = torch.optim.SGD(net.parameters(), lr=1e-5)
  9. optimizer = ScheduledOptim(basic_optim)
  10.  
  11.  
  12. lr_mult = (1 / 1e-5) ** (1 / 100)
  13. lr = []
  14. losses = []
  15. best_loss = 1e9
  16. for data, label in train_data:
  17. with torch.cuda.device(0):
  18. data = Variable(data.cuda())
  19. label = Variable(label.cuda())
  20. # forward
  21. out = net(data)
  22. loss = criterion(out, label)
  23. # backward
  24. optimizer.zero_grad()
  25. loss.backward()
  26. optimizer.step()
  27. lr.append(optimizer.learning_rate)
  28. losses.append(loss.data[0])
  29. optimizer.set_learning_rate(optimizer.learning_rate lr_mult)
  30. if loss.data[0] < best_loss:
  31. best_loss = loss.data[0]
  32. if loss.data[0] > 4 best_loss or optimizer.learning_rate > 1.:
  33. break
  34.  
  35. plt.figure()
  36. plt.xticks(np.log([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1]), (1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1))
  37. plt.xlabel(‘learning rate’)
  38. plt.ylabel(‘loss’)
  39. plt.plot(np.log(lr), losses)
  40. plt.show()
  41. plt.figure()
  42. plt.xlabel(‘num iterations’)
  43. plt.ylabel(‘learning rate’)
  44. plt.plot(lr)

one more thing

通过上面的例子我们能够有一个非常有效的方法寻找初始学习率,同时在我们的认知中,学习率的策略都是不断地做decay,而上面的论文别出心裁,提出了一种循环变化学习率的思想,能够更快的达到最优解,非常具有启发性,推荐大家去阅读阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/171616.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

建造者模式-C语言实现

UML类图&#xff1a; 代码实现&#xff1a; #include <stdio.h> #include <stdlib.h>// 产品类 typedef struct {char* part1;char* part2;char* part3; } Product;// 抽象建造者类 typedef struct {void (*buildPart1)(void*, const char*);void (*buildPart2)(v…

RabbitMQ之延迟消息实战

RabbitMQ之延迟消息实战 使用死信交换机实现延迟消息 使用死信交换机的过期时间以及没有消费者进行消费&#xff0c;时间到了就会到死信队列中&#xff0c;由此可以实现延迟消息使用延迟消息插件 前提&#xff1a;需要mq配置插件 延时信息案例实战 把一个30分钟的延迟消息可以…

前端review

关于实时预览vs code中的颜色代码需要安装的插件&#xff0c;包括html文件格式中的颜色代码安装Flutter Color插件 VSCode 前端常用插件集合 1.Auto Close Tag自动闭合HTML/XML标签 2.Auto Rename Tag自动完成另一侧标签的同步修改 3.Beautify格式化代码&#xff0c;值得注…

【高可用架构】Haproxy 和 Keepalived 的区别

Haproxy 和 Keepalived 的区别 1.负载均衡器介绍2.Haproxy 和 Keepalived 的基本概念和特点2.1 Haproxy2.2 Keepalived 3.Haproxy 和 Keepalived 的区别3.1 功能上的区别3.2 架构上的区别3.3 配置上的区别 4.总结 1.负载均衡器介绍 负载均衡器是一种解决高并发和高可用的常用的…

【开源】基于Vue和SpringBoot的农家乐订餐系统

项目编号&#xff1a; S 043 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S043&#xff0c;文末获取源码。} 项目编号&#xff1a;S043&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户2.2 管理员 三、系统展示四、核…

C/C++内存管理,malloc,realloc,calloc,new,delete详解!!!

1.初步了解内存中各个区间存储的数据特征 1.栈区&#xff1a;存储一些局部变量、函数参数、返回值等&#xff0c;跟函数栈振有关&#xff0c;出了作用域&#xff0c;生命周期结束。 2.堆区&#xff1a;用于动态开辟空间&#xff0c;如果不主动销毁空间&#xff0c;则程序运行结…

因式分解的几何意义

本来准备和女儿一起玩一道几何题&#xff0c;想想还是算了&#xff0c;不如讲点更有趣的。 任何因式分解都是在堆积木&#xff0c;不信你看&#xff1a; 二项式定理&#xff0c;洋灰三角&#xff0c;都是面积&#xff0c;体积&#xff0c;超维体积的拼接&#xff0c;一个大超…

Python 安装django-cors-headers解决跨域问题

一、PythonCorsHeaders概念 PythonCorsHeaders是一个轻量级的Python工具&#xff0c;用于解决跨域HTTP请求的问题。它允许你指定哪些网站或IP地址可以访问你的站点&#xff0c;并控制这些站点可以访问哪些内容。 现代网站越来越多地使用Ajax技术&#xff0c;使得浏览器能够从不…

【人工智能】Chatgpt的训练原理

前言 前不久&#xff0c;在学习C语言的我写了一段三子棋的代码&#xff0c;但是与我对抗的电脑是没有任何思考的&#xff0c;你看了这段代码就理解为什么了&#xff1a; void computerMove(char Board[ROW][COL], int row, int col) {while (1){unsigned int i rand() % ROW, …

设计模式之十二:复合模式

模式通常被一起使用&#xff0c;并被组合在同一个解决方案中。 复合模式在一个解决方案中结合两个或多个模式&#xff0c;以解决一般或重复发生的问题。 首先重新构建鸭子模拟器&#xff1a; package headfirst.designpatterns.combining.ducks;public interface Quackable …

【网络】传输层 --- 详解TCP协议

目录 一、协议段格式及其策略确认应答(ACK)机制6个标志位超时重传流量控制滑动窗口1、先谈滑动窗口一般情况2、再谈特殊窗口 拥塞控制拥塞窗口 延迟应答&&捎带应答面向字节流粘包问题 二、三次握手和四次挥手三次握手为什么是3次&#xff1f;不是2、4、5、6次呢 四次挥…

NoSQL基础知识小结

NoSQL 基础知识 什么是 NoSQL? NoSQL&#xff08;Not Only SQL 的缩写&#xff09;泛指非关系型的数据库&#xff0c;主要针对的是键值、文档以及图形类型数据存储。 NoSQL 数据库天生支持分布式&#xff0c;数据冗余和数据分片等特性&#xff0c;旨在提供可扩展的高可用高…

【代码】基于VMD(变分模态分解)-SSA(麻雀搜索算法优化)-LSTM的光伏功率预测模型(完美复现)matlab代码

程序名称&#xff1a;基于VMD&#xff08;变分模态分解&#xff09;-SSA&#xff08;麻雀搜索算法优化&#xff09;-LSTM的光伏功率预测模型 实现平台&#xff1a;matlab 代码简介&#xff1a;提出了变分模态分解(VMD)和麻雀搜索算法(SSA)与长短期记忆神经网络 (LSTM)相耦合,…

Spark-06:Spark 共享变量

目录 1.广播变量&#xff08;broadcast variables&#xff09; 2.累加器&#xff08;accumulators&#xff09; 在分布式计算中&#xff0c;当在集群的多个节点上并行运行函数时&#xff0c;默认情况下&#xff0c;每个任务都会获得函数中使用到的变量的一个副本。如果变量很…

Android 相机库CameraView源码解析 (一) : 预览

1. 前言 这段时间&#xff0c;在使用 natario1/CameraView 来实现带滤镜的预览、拍照、录像功能。 由于CameraView封装的比较到位&#xff0c;在项目前期&#xff0c;的确为我们节省了不少时间。 但随着项目持续深入&#xff0c;对于CameraView的使用进入深水区&#xff0c;逐…

【LeetCode】挑战100天 Day17(热题+面试经典150题)

【LeetCode】挑战100天 Day17&#xff08;热题面试经典150题&#xff09; 一、LeetCode介绍二、LeetCode 热题 HOT 100-192.1 题目2.2 题解 三、面试经典 150 题-193.1 题目3.2 题解 一、LeetCode介绍 LeetCode是一个在线编程网站&#xff0c;提供各种算法和数据结构的题目&…

[建议收藏] 一个网站集合所有最新最全的AI工具

今天给大家推荐一个宝藏的AI工具合集网站&#xff0c;有了这个网站&#xff0c;你们再也不用去其他地方找AI工具了。 名称&#xff1a;AI-BOT工具集 这个网站精选1000AI工具&#xff0c;并持续每天更新添加&#xff0c;包括AI写作、AI绘画、AI音视频处理、AI平面设计、AI自动编…

Atcoder Beginner Contest 330——A~F题

A - Counting Passes Description Problem Statement N N N people labeled 1 , 2 , … , N 1,2,\dots,N 1,2,…,N took an exam, and person i i i scored A i A_i Ai​ points. Only those who scored at least L L L points pass this exam. Determine how many peopl…

SpringBoot:邮件发送

官网文档&#xff1a;39. Sending Email (spring.io)。 Sending Email Spring框架提供了JavaMailSender实例&#xff0c;用于发送邮件。 如果SpringBoot项目中包含了相关的启动器&#xff0c;那么就会自动装配一个Bean实例到项目中。 在SpringBoot项目中引入如下Email启动器&a…

【数据分享】2019-2023年我国区县逐月新房房价数据(Excel/Shp格式)

房价是一个城市发展程度的重要体现&#xff0c;一个城市的房价越高通常代表这个城市越发达&#xff0c;对于人口的吸引力越大&#xff01;因此&#xff0c;房价数据是我们在各项城市研究中都非常常用的数据&#xff01;之前我们分享过2019-2023年我国地级市逐月房价数据&#x…