BERT-pytorch源码实现,解决内存溢出问题

BERT-pytorch源码实现,解决内存溢出问题

相信大家很多人都在做BERT这个模型,但是,有些人可能就是直接从transfermer这个模型里直接导入数据,但是这种方法不方便我们修改模型,于是有些人就通过pytorch详细实现了BERT,但是博主发现,这些详细实现BERT的代码出现了内存溢出问题,博主就做了改进,下面代码,我们可以解决掉内存溢出问题,主要还是因为中间结果并没有完全释放,代码如下:
注:大家如果要解决内存溢出问题,关注del语句就可以了。


'''code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathorReference : https://github.com/jadore801120/attention-is-all-you-need-pytorchhttps://github.com/JayParks/transformer, https://github.com/dhlee347/pytorchic-bert
'''
import re
import math
import torch
import numpy as np
from random import *
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Dataimport matplotlib.pyplot as plt
from data_process import get_datasetences,label,setences_test,label_test=get_data()
device = torch.device('cpu')sentences=setences
#text = (
#    'Hello, how are you? I am Romeo.\n' # R
#    'Hello, Romeo My name is Juliet. Nice to meet you.\n' # J
#    'Nice meet you too. How are you today?\n' # R
#    'Great. My baseball team won the competition.\n' # J
#    'Oh Congratulations, Juliet\n' # R
#    'Thank you Romeo\n' # J
#    'Where are you going today?\n' # R
#    'I am going shopping. What about you?\n' # J
#    'I am going to visit my grandmother. she is not very well' # R
#)
#sentences = re.sub("[.,!?\\-]", '', text.lower()).split('\n') # filt
#print(sentences)word_list = list(set(" ".join(setences).split())|set(" ".join(setences_test).split())) # ['hello', 'how', 'are', 'you',...]
word2idx = {'[PAD]' : 0, '[CLS]' : 1, '[SEP]' : 2, '[MASK]' : 3}
for i, w in enumerate(word_list):word2idx[w] = i + 4
idx2word = {i: w for i, w in enumerate(word2idx)}
vocab_size = len(word2idx)token_list = list()
for sentence in setences:arr = [word2idx[s] for s in sentence.split()]token_list.append(arr)#print(token_list)
'''
[[12, 7, 22, 5, 39, 21, 15],[12, 15, 13, 35, 10, 27, 34, 14, 19, 5],[34, 19, 5, 17, 7, 22, 5, 8],[33, 13, 37, 32, 28, 11, 16],[30, 23, 27],[6, 5, 15],[36, 22, 5, 31, 8],[39, 21, 31, 18, 9, 20, 5],[39, 21, 31, 14, 29, 13, 4, 25, 10, 26, 38, 24]]
'''
# BERT Parameters
maxlen = 30
batch_size = 6
max_pred = 5 # max tokens of prediction
n_layers = 6
n_heads = 12
d_model = 768
d_ff = 768*4 # 4*d_model, FeedForward dimension
d_k = d_v = 64  # dimension of K(=Q), V
n_segments = 3
# sample IsNext and NotNext to be same in small batch size
def make_data():batch = []for i in range(len(setences)):tokens_a_index =  itokens_a = token_list[tokens_a_index]input_ids = [word2idx['[CLS]']] + tokens_a + [word2idx['[SEP]']]segment_ids = [0] * (1 + len(tokens_a) + 1) # MASK LMn_pred = min(max_pred, max(1, int(len(input_ids) * 0.15)))  # 15 % of tokens in one sentencecand_maked_pos = [i for i, token in enumerate(input_ids)if token != word2idx['[CLS]'] and token != word2idx['[SEP]']]  # candidate masked positionshuffle(cand_maked_pos)masked_tokens, masked_pos = [], []for pos in cand_maked_pos[:n_pred]:masked_pos.append(pos)masked_tokens.append(input_ids[pos])if random() < 0.8:  # 80%input_ids[pos] = word2idx['[MASK]']  # make maskelif random() > 0.9:  # 10%index = randint(0, vocab_size - 1)  # random index in vocabularywhile index < 4:  # can't involve 'CLS', 'SEP', 'PAD'index = randint(0, vocab_size - 1)input_ids[pos] = index  # replace# Zero Paddingsn_pad = maxlen - len(input_ids)input_ids.extend([0] * n_pad)segment_ids.extend([0] * n_pad)# Zero Padding (100% - 15%) tokensif max_pred > n_pred:n_pad = max_pred - n_predmasked_tokens.extend([0] * n_pad)masked_pos.extend([0] * n_pad)batch.append([input_ids, segment_ids, masked_tokens, masked_pos, label[tokens_a_index]])  # IsNextreturn batch
batch = make_data()
input_ids, segment_ids, masked_tokens, masked_pos, isNext = zip(*batch)
'''>>> a = [1,2,3]
b = [4,5,6]
zipped = zip(a,b)     # 打包为元组的列表
[(1, 4), (2, 5), (3, 6)]
zip(*zipped)          # 与 zip 相反,可理解为解压,为zip的逆过程,可用于矩阵的转置
[(1, 2, 3), (4, 5, 6)]
'''
input_ids, segment_ids, masked_tokens, masked_pos, isNext = \torch.LongTensor(input_ids), torch.LongTensor(segment_ids), torch.LongTensor(masked_tokens), \torch.LongTensor(masked_pos), torch.LongTensor(isNext)class MyDataSet(Data.Dataset):def __init__(self, input_ids, segment_ids, masked_tokens, masked_pos, isNext):self.input_ids = input_idsself.segment_ids = segment_idsself.masked_tokens = masked_tokensself.masked_pos = masked_posself.isNext = isNextdef __len__(self):return len(self.input_ids)def __getitem__(self, idx):return self.input_ids[idx], self.segment_ids[idx], self.masked_tokens[idx], self.masked_pos[idx], self.isNext[idx]loader = Data.DataLoader(MyDataSet(input_ids, segment_ids, masked_tokens, masked_pos, isNext), batch_size, True)
def get_attn_pad_mask(seq_q, seq_k):batch_size, seq_len = seq_q.size()   #[batch_size,maxlen]# eq(zero) is PAD tokenpad_attn_mask = seq_q.data.eq(0).unsqueeze(1)  # [batch_size, 1, seq_len]return pad_attn_mask.expand(batch_size, seq_len, seq_len)  # [batch_size, seq_len, seq_len]def gelu(x):return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))class Embedding(nn.Module):def __init__(self):super(Embedding, self).__init__()self.tok_embed = nn.Embedding(vocab_size, d_model)  # token embeddingself.pos_embed = nn.Embedding(maxlen, d_model)  # position embeddingself.seg_embed = nn.Embedding(n_segments, d_model)  # segment(token type) embeddingself.norm = nn.LayerNorm(d_model)def forward(self, x, seg):seq_len = x.size(1)pos = torch.arange(seq_len, dtype=torch.long)# print("pos:",pos)'''pos: tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29])'''pos = pos.unsqueeze(0).expand_as(x).to(device)  # [seq_len] -> [batch_size, seq_len]# print("pos_batch:", pos)embedding = self.tok_embed(x) + self.pos_embed(pos) + self.seg_embed(seg)del pos,x, segreturn self.norm(embedding)class ScaledDotProductAttention(nn.Module):def __init__(self):super(ScaledDotProductAttention, self).__init__()def forward(self, Q, K, V, attn_mask):scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, seq_len, seq_len]scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.attn = nn.Softmax(dim=-1)(scores)context = torch.matmul(attn, V)del attn,scores,Q, K, V,attn_maskreturn contextclass MultiHeadAttention(nn.Module):def __init__(self):super(MultiHeadAttention, self).__init__()self.W_Q = nn.Linear(d_model, d_k * n_heads)self.W_K = nn.Linear(d_model, d_k * n_heads)self.W_V = nn.Linear(d_model, d_v * n_heads)def forward(self, Q, K, V, attn_mask):# q: [batch_size, seq_len, d_model], k: [batch_size, seq_len, d_model], v: [batch_size, seq_len, d_model]residual, batch_size = Q, Q.size(0)residual=residual.to(device)# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # q_s: [batch_size, n_heads, seq_len, d_k]k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # k_s: [batch_size, n_heads, seq_len, d_k]v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # v_s: [batch_size, n_heads, seq_len, d_v]attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len]# context: [batch_size, n_heads, seq_len, d_v], attn: [batch_size, n_heads, seq_len, seq_len]context = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v)# context: [batch_size, seq_len, n_heads, d_v]output = nn.Linear(n_heads * d_v, d_model).to(device)(context)del context,attn_mask,q_s,k_s,v_sreturn nn.LayerNorm(d_model).to(device)(output + residual) # output: [batch_size, seq_len, d_model]class PoswiseFeedForwardNet(nn.Module):def __init__(self):super(PoswiseFeedForwardNet, self).__init__()self.fc1 = nn.Linear(d_model, d_ff)self.fc2 = nn.Linear(d_ff, d_model)def forward(self, x):# (batch_size, seq_len, d_model) -> (batch_size, seq_len, d_ff) -> (batch_size, seq_len, d_model)return self.fc2(gelu(self.fc1(x)))class EncoderLayer(nn.Module):def __init__(self):super(EncoderLayer, self).__init__()self.enc_self_attn = MultiHeadAttention()self.pos_ffn = PoswiseFeedForwardNet()def forward(self, enc_inputs, enc_self_attn_mask):enc_outputs = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,Venc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, seq_len, d_model]del enc_self_attn_mask,enc_inputsreturn enc_outputsclass BERT(nn.Module):def __init__(self):super(BERT, self).__init__()self.embedding = Embedding()self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])self.fc = nn.Sequential(nn.Linear(d_model, d_model),nn.Dropout(0.5),nn.Tanh(),)self.classifier = nn.Linear(d_model, 3)self.linear = nn.Linear(d_model, d_model)self.activ2 = gelu# fc2 is shared with embedding layerembed_weight = self.embedding.tok_embed.weightself.fc2 = nn.Linear(d_model, vocab_size, bias=False)self.fc2.weight = embed_weightdef forward(self, input_ids, segment_ids, masked_pos):output = self.embedding(input_ids, segment_ids) # [bach_size, seq_len, d_model]enc_self_attn_mask = get_attn_pad_mask(input_ids, input_ids) # [batch_size, maxlen, maxlen]for layer in self.layers:# output: [batch_size, max_len, d_model]output = layer(output, enc_self_attn_mask)# it will be decided by first token(CLS)'''(fc): Sequential((0): Linear(in_features=768, out_features=768, bias=True)(1): Dropout(p=0.5, inplace=False)(2): Tanh())(classifier): Linear(in_features=768, out_features=2, bias=True)(linear): Linear(in_features=768, out_features=768, bias=True)(fc2): Linear(in_features=768, out_features=40, bias=False)'''# logits_clsf :根据[CLS]预测是否是连续的句子,[CLS]在第一维h_pooled = self.fc(output[:, 0]) # [batch_size, d_model]logits_clsf = self.classifier(h_pooled) # [batch_size, 2] predict isNextmasked_pos = masked_pos[:, :, None].expand(-1, -1, d_model) # [batch_size, max_pred, d_model]h_masked = torch.gather(output, 1, masked_pos) # masking position [batch_size, max_pred, d_model]h_masked = self.activ2(self.linear(h_masked)) # [batch_size, max_pred, d_model]#logits_lm:预测mask的tokenlogits_lm = self.fc2(h_masked) # [batch_size, max_pred, vocab_size]del h_masked,h_pooled,output,enc_self_attn_mask,masked_pos,input_ids,segment_idsreturn logits_lm, logits_clsf
model = BERT().to(device)
# print(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.000001)
#out = torch.gather(input, dim, index)
index = torch.from_numpy(np.array([[1, 2, 0], [2, 0, 1]])).type(torch.LongTensor)
index = index[:, :, None].expand(-1, -1, 10)
loss_list=[]
for epoch in range(10):loss_sum=0for input_ids, segment_ids, masked_tokens, masked_pos, isNext in loader:logits_lm, logits_clsf = model(input_ids, segment_ids, masked_pos)#logits_lm:[batch_size,max_pred,vocab_size] -> [batch_size*max_pred,vocab_size],batch_size*max_pred个词。每个词都有vocab_size种可能。loss_lm = criterion(logits_lm.view(-1, vocab_size), masked_tokens.view(-1)) # for masked LMloss_lm = (loss_lm.float()).mean()#  isNext=isNext.to(device)loss_clsf = criterion(logits_clsf, isNext) # for sentence classificationloss = loss_lm + loss_clsfloss_sum=loss_sum+lossloss_list.append(float(loss))print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))optimizer.zero_grad()loss.backward()optimizer.step()del loss, logits_clsf, input_ids,segment_ids,masked_tokens,masked_pos,logits_lm,isNext,loss_clsf,loss_lm# Predict mask tokens ans isNextprint('test')token_list=[]for sentence in setences_test:arr = [word2idx[s] for s in sentence.split()]token_list.append(arr)def make_data_test():batch = []for i in range(len(setences_test)):tokens_a_index =  itokens_a = token_list[tokens_a_index]input_ids = [word2idx['[CLS]']] + tokens_a + [word2idx['[SEP]']]segment_ids = [0] * (1 + len(tokens_a) + 1) # MASK LMn_pred = min(max_pred, max(1, int(len(input_ids) * 0.15)))  # 15 % of tokens in one sentencecand_maked_pos = [i for i, token in enumerate(input_ids)if token != word2idx['[CLS]'] and token != word2idx['[SEP]']]  # candidate masked positionshuffle(cand_maked_pos)masked_tokens, masked_pos = [], []for pos in cand_maked_pos[:n_pred]:masked_pos.append(pos)masked_tokens.append(input_ids[pos])if random() < 0.8:  # 80%input_ids[pos] = word2idx['[MASK]']  # make maskelif random() > 0.9:  # 10%index = randint(0, vocab_size - 1)  # random index in vocabularywhile index < 4:  # can't involve 'CLS', 'SEP', 'PAD'index = randint(0, vocab_size - 1)input_ids[pos] = index  # replace# Zero Paddingsn_pad = maxlen - len(input_ids)input_ids.extend([0] * n_pad)segment_ids.extend([0] * n_pad)# Zero Padding (100% - 15%) tokensif max_pred > n_pred:n_pad = max_pred - n_predmasked_tokens.extend([0] * n_pad)masked_pos.extend([0] * n_pad)batch.append([input_ids, segment_ids, masked_tokens, masked_pos, label_test[tokens_a_index]])  # IsNextreturn batch
# Proprecessing Finishedbatch = make_data_test()
input_ids, segment_ids, masked_tokens, masked_pos, isNext = zip(*batch)
'''>>> a = [1,2,3]
b = [4,5,6]
zipped = zip(a,b)     # 打包为元组的列表
[(1, 4), (2, 5), (3, 6)]
zip(*zipped)          # 与 zip 相反,可理解为解压,为zip的逆过程,可用于矩阵的转置
[(1, 2, 3), (4, 5, 6)]
'''
input_ids, segment_ids, masked_tokens, masked_pos, isNext = \torch.LongTensor(input_ids), torch.LongTensor(segment_ids), torch.LongTensor(masked_tokens), \torch.LongTensor(masked_pos), torch.LongTensor(isNext)predict_list=[]for i in range(len(batch)):input_ids, segment_ids, masked_tokens, masked_pos, isNext = batch[0]print([idx2word[w] for w in input_ids if idx2word[w] != '[PAD]'])logits_lm, logits_clsf = model(torch.LongTensor([input_ids]), \torch.LongTensor([segment_ids]), torch.LongTensor([masked_pos]))logits_lm = logits_lm.data.max(2)[1][0].data.numpy()print('masked tokens list : ',[pos for pos in masked_tokens if pos != 0])print('predict masked tokens list : ',[pos for pos in logits_lm if pos != 0])logits_clsf = logits_clsf.data.max(1)[1].data.numpy()[0]print('isNext : ', isNext )print('predict isNext : ', logits_clsf)predict_list.append(logits_clsf)test_loss = 0
correct = 0
total = 0
target_num =[0,0,0]
predict_num = [0,0,0]
p=0
acc_num =[0,0,0]for i in label_test:target_num[i]+=1for i in predict_list:#  print(i.argmax())index=int(i)if index in [0,1,2]:predict_num[index]+=1#    print(id2word[index],id2word[p])if index==label_test[p]:acc_num[index]+=1p=p+1#print(target_num)
#print(predict_num)
#print(acc_num)
recallz=0
precisionz=0
accuracyz=0
F1z=0ps=0
rs=0
for i in range(3):if target_num[i]!=0:recallz=acc_num[i]/target_num[i]else:recallz=0if predict_num[i]!=0:precisionz=acc_num[i]/predict_num[i]else:precisionz=0ps=ps+precisionzrs=rs+recallzif recallz+precisionz!=0:F1z=2*recallz*precisionz/(recallz+precisionz)+F1z#recall = [acc_num[i]/target_num[i] for i in range(3)]#precision = [acc_num[i]/predict_num[i] for i in range(3)]#F1 = [2*recall[i]*precision[i]/(recall[i]+precision[i]) for i in range(3)]print()
accuracy = sum(acc_num)/sum(target_num) # 打印格式方便复制
print('recall:',rs/3)
print('precision:',ps/3)
print('F1:',F1z/3)
print('accuracy',accuracy)plt.plot(loss_list,label='BERT')
plt.legend()
plt.title('loss-epoch')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/171085.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浏览器v8垃圾回收机制和内存泄漏分析-初级

借鉴&#xff1a;一文搞懂V8引擎的垃圾回收 - 掘金 (juejin.cn) 聊聊V8引擎的垃圾回收 - 掘金 (juejin.cn) 内存泄漏方向&#xff1a; 1、全局变量 未手动清除 2、定时器 未手动清除 3、闭包中使用了匿名函数 未手动清除 4、dom被赋值使用后 未手动清除 其他解决方式 1、…

均匀球形分布的随机三维单位向量

生成具有均匀球形分布的随机三维单位向量[参考] import numpy as np import matplotlib.pyplot as plt def random_three_vector():"""Generates a random 3D unit vector (direction) with a uniform spherical distributionAlgo from http://stackoverflow.c…

使用sizeof计算普通变量所占空间大小

// 32位WinNT操作系统环境下 char str[] "hello"; char *p str; int n 10;sizeof(str) sizeof(p) sizeof(n) void Func(char str[100]) {sizeof(str) }void *p malloc(100); sizeof(p) 解析&#xff1a; str变量表示数组&#xff0c;对数组变量做size…

区间预测 | Matlab实现BP-KDE的BP神经网络结合核密度估计多变量时序区间预测

区间预测 | Matlab实现BP-KDE的BP神经网络结合核密度估计多变量时序区间预测 目录 区间预测 | Matlab实现BP-KDE的BP神经网络结合核密度估计多变量时序区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.BP-KDE多变量时间序列区间预测&#xff0c;基于BP神经网络多…

MFC 绘制单一颜色三角形、渐变颜色边框三角形、渐变填充三角形、正弦函数曲线实例

MFC 绘制三种不同圆形以及绘制正弦函数曲线 本文使用visual Studio MFC 平台实现绘制单一颜色圆形、渐变颜色边框圆形、渐变填充圆形以及绘制三角函数正弦函数曲线. 关于基础工程的创建请参考 01-Visual Studio 使用MFC 单文档工程绘制单一颜色直线和绘制渐变颜色的直线 02-vis…

Jenkins CI/CD

1、 Jenkins CI/CD 流程图 说明&#xff1a;这张图稍微更形象一点&#xff0c;上线之前先把代码git到版本仓库&#xff0c;然后通过Jenkins 如Java项目通过maven去构建&#xff0c;这是在非容器之前&#xff0c;典型的自动化的一个版本上线流程。那它有哪些问题呢&#xff1f; …

ASN.1 编码规则概述(一)

文章目录 一、ASN.1二、 ASN.1的标准编码规则分类三、描述ASN.1记法的标准四、描述ASN.1编码规则的标准 一、ASN.1 ASN.1&#xff08;Abstract Syntax Notation One) 是一套标准&#xff0c;是描述数据的表示、编码、传输、解码的灵活的记法&#xff0c;它提供了一套正式、 无…

C# 关于异常处理 try-catch语句的使用

在实际应用中&#xff0c;比如涉及文件读写、网络通信时&#xff0c;会因为文件不存在、权限不够、网络异常等原因引发异常&#xff0c;或者对数据库连接、查询、更新等操作&#xff0c;会因为连接超时、语法错误、唯一约束冲突等引发异常。 看过去的代码&#xff0c;当进行上…

基于opencv+ImageAI+tensorflow的智能动漫人物识别系统——深度学习算法应用(含python、JS、模型源码)+数据集(四)

目录 前言总体设计系统整体结构图系统流程图 运行环境爬虫模型训练实际应用 模块实现1. 数据准备1&#xff09;爬虫下载原始图片2&#xff09;手动筛选图片 2. 数据处理3. 模型训练及保存4. 模型测试1&#xff09;前端2&#xff09;后端 系统测试1. 测试效果2. 模型应用1&#…

webshell之内置函数免杀

原始webshell 查杀的点在于Runtime.getRuntime().exec非常明显的特征 利用ProcessBuilder替换Runtime.getRuntime().exec(cmd) Runtime.getRuntime().exec(cmd)其实最终调用的是ProcessBuilder这个函数&#xff0c;因此我们可以直接利用ProcessBuilder来替换Runtime.getRunti…

Python面向对象编程——类方法、实例方法和静态方法总结

在Python面向对象编程中&#xff0c;类方法&#xff08;class methods&#xff09;、实例方法&#xff08;instance methods&#xff09;和静态方法&#xff08;static methods&#xff09;是不同类型的方法&#xff0c;它们有一些联系&#xff0c;但也存在一些明显的区别。 类…

【服务器能干什么】二十分钟搭建一个属于自己的 RSS 服务

如果大家不想自己捣鼓,只是想尝尝鲜,可以在下面留言,我后台帮大家开几个账号玩一玩。 哔哩哔哩【高清版本可以点击去吐槽到 B 站观看】:【VPS服务器到底能干啥】信息爆炸的年代,如何甄别出优质的内容?你可能需要自建一个RSS服务!_哔哩哔哩_bilibili 前言 RSS 服务 市…

二年级 最少需要几个刻度?

娃二年级题目&#xff1a;请你设计一把尺子&#xff0c;用这把尺子一次能画出 1~8厘米八条不同长度的线段。最少需要几个刻度&#xff1f; 答&#xff1a;最少需要 5 个刻度&#xff1b; 方案有&#xff1a; 0, 1, 2, 5, 8 0, 1, 3, 7, 8 0, 1, 4, 6, 8 0, 1, 5, 6, 8 0, 1, 5…

post请求参数全大写后台接不到参数

post请求参数全大写后台接不到参数 开发过程中&#xff0c;我们一般都习惯用驼峰命名法&#xff0c;但是特殊情况要求请求参数全大写&#xff08;或者首字母大写&#xff09;&#xff0c;测试验证的时候发现&#xff0c;接收不到请求参数。 前端请求传递&#xff1a; 服务端接…

【nlp】3.6 Tansformer模型构建(编码器与解码器模块耦合)

Tansformer模型构建(编码器与解码器模块耦合) 1. 模型构建介绍2 编码器-解码器结构的代码实现3 Tansformer模型构建过程的代码实现4 小结1. 模型构建介绍 通过上面的小节, 我们已经完成了所有组成部分的实现, 接下来就来实现完整的编码器-解码器结构耦合. Transformer总体架…

burpsuite的大名早有耳闻,近日得见尊荣,倍感荣幸

问题&#xff1a; burpsuite中文乱码何解&#xff1f; burpsuite 与君初相识&#xff0c;犹如故人归。 burpsuite早有耳闻&#xff0c;近日得见真容&#xff0c;果然非同凡响。 Burp Suite is a comprehensive suite of tools for web application security testing. burp …

共射放大电路削顶和射随电路削底的问题

打算做了一个中频放大电路&#xff0c;用两级共射放大电路放大400倍左右。结果发现波形失真很厉害。仔细观察波形&#xff0c;发现第二级削底&#xff0c;断开第一级到第二级的耦合电容后&#xff0c;第一级输出正常了。这应该是第一级带了负载。导致被削顶。到了第二级反相后就…

spark的算子

spark的算子 1.spark的单Value算子 Spark中的单Value算子是指对一个RDD中的每个元素进行操作&#xff0c;并返回一个新的RDD。下面详细介绍一些常用的单Value算子及其功能&#xff1a; map&#xff1a;逐条映射&#xff0c;将RDD中的每个元素通过指定的函数转换成另一个值&am…

JavaScript基础—运算符、表达式和语句、分支语句、循环语句、综合案例-ATM存取款机

版本说明 当前版本号[20231125]。 版本修改说明20231125初版 目录 文章目录 版本说明目录JavaScript 基础 - 第2天运算符算术运算符赋值运算符自增/自减运算符比较运算符逻辑运算符运算符优先级 语句表达式和语句分支语句if 分支语句if双分支语句if 多分支语句三元运算符&am…

spring事务管理快速入门(以转账为例)

spring事务管理&#xff08;以转账为例&#xff09; 概述 Spring事务管理提供了一种在应用程序中管理事务的机制&#xff0c;它抽象了底层的事务管理细节&#xff0c;使得开发者可以更加专注于业务逻辑的实现&#xff0c;而不必过多关心事务的处理。以下是Spring事务管理的一…