spark的算子

spark的算子

在这里插入图片描述

1.spark的单Value算子

Spark中的单Value算子是指对一个RDD中的每个元素进行操作,并返回一个新的RDD。下面详细介绍一些常用的单Value算子及其功能:

  1. map:逐条映射,将RDD中的每个元素通过指定的函数转换成另一个值,最终返回一个新的RDD。
rdd = sc.parallelize([1, 2, 3, 4, 5])
result = rdd.map(lambda x: x * 2)
# result: [2, 4, 6, 8, 10]
  1. flatMap: 扁平化映射,将RDD中的每个元素通过指定的函数转换成多个值,并将这些值展开为一个新的RDD。
rdd = sc.parallelize([1, 2, 3, 4, 5])
result = rdd.flatMap(lambda x: range(x, x+3))
# result: [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7]
  1. glom:将一个分区中的多个单条数据转换为相同类型的单个数组进行处理。返回一个新的RDD,其中每个元素是一个数组。
rdd = sc.parallelize([1, 2, 3, 4, 5], 2)  # 两个分区
result = rdd.glom().collect()
# result: [[1, 2], [3, 4, 5]]
  1. groupBy: 将RDD中的元素按照指定条件分组,返回一个键值对RDD,其中的每个元素是一个(key, iterator)对,key为分组的条件,iterator为对应分组的元素迭代器。
rdd = sc.parallelize(['apple', 'banana', 'cherry', 'date'])
result = rdd.groupBy(lambda x: x[0])
# result: [('a', ['apple']), ('b', ['banana']), ('c', ['cherry']), ('d', ['date'])]
  1. filter:根据指定的规则过滤出符合条件的元素,返回一个新的RDD。
rdd = sc.parallelize([1, 2, 3, 4, 5])
result = rdd.filter(lambda x: x % 2 == 0)
# result: [2, 4]
  1. sample:从RDD中进行采样,返回一个包含采样结果的新的RDD。
rdd = sc.parallelize(range(10))
result = rdd.sample(False, 0.5)
# result: [0, 2, 3, 4, 5, 7]
  1. distinct(shuffle):去重,将RDD中重复的元素去除,返回一个由不重复元素组成的新的RDD。
rdd = sc.parallelize([1, 2, 2, 3, 3, 3])
result = rdd.distinct()
# result: [1, 2, 3]
  1. coalesce(shuffle):缩减分区,将RDD的分区数缩减为指定的数量。
rdd = sc.parallelize([1, 2, 3, 4, 5], 4)  # 4个分区
result = rdd.coalesce(2)
# result: [1, 2, 3, 4, 5](分区数变为2)
  1. repartition(shuffle):扩增分区数,底层是coalesce。将RDD的分区数扩增到指定的数量。
rdd = sc.parallelize([1, 2, 3, 4, 5], 2)  # 2个分区
result = rdd.repartition(4)
# result: [1, 2], [3, 4], [5](分区数变为4)
  1. sortBy(shuffle):根据指定的规则对数据源中的数据进行排序,默认为升序。
rdd = sc.parallelize([3, 1, 4, 2, 5])
result = rdd.sortBy(lambda x: x)
# result: [1, 2, 3, 4, 5]

这些单Value算子能够对RDD中的每个元素进行处理,并返回一个新的RDD,可以用于各种数据转换、过滤、去重等操作。

2. Spark的双Value算子

双Value算子是指对两个RDD进行操作,并返回一个新的RDD。下面介绍一些常用的双Value算子及其功能:

  1. union: 对两个RDD求并集,返回包含两个RDD中所有元素的新RDD。
rdd1 = sc.parallelize([1, 2, 3])
rdd2 = sc.parallelize([3, 4, 5])
result = rdd1.union(rdd2)
# result: [1, 2, 3, 3, 4, 5]
  1. intersection: 对两个RDD求交集,返回包含两个RDD中共有元素的新RDD。
rdd1 = sc.parallelize([1, 2, 3])
rdd2 = sc.parallelize([3, 4, 5])
result = rdd1.intersection(rdd2)
# result: [3]
  1. subtract: 对两个RDD求差集,返回只属于第一个RDD而不属于第二个RDD的元素的新RDD。
rdd1 = sc.parallelize([1, 2, 3])
rdd2 = sc.parallelize([3, 4, 5])
result = rdd1.subtract(rdd2)
# result: [1, 2]
  1. cartesian: 对两个RDD进行笛卡尔积操作,返回所有可能的元素对组成的新RDD。
rdd1 = sc.parallelize([1, 2])
rdd2 = sc.parallelize(['a', 'b'])
result = rdd1.cartesian(rdd2)
# result: [(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')]
  1. zip: 将两个RDD的元素按照索引位置进行配对,返回键值对组成的新RDD。
rdd1 = sc.parallelize([1, 2, 3])
rdd2 = sc.parallelize(['a', 'b', 'c'])
result = rdd1.zip(rdd2)
# result: [(1, 'a'), (2, 'b'), (3, 'c')]
  1. join: 对两个键值对RDD进行内连接操作,返回具有相同键的元素对组成的新RDD。
rdd1 = sc.parallelize([(1, 'apple'), (2, 'banana')])
rdd2 = sc.parallelize([(1, 'red'), (2, 'yellow')])
result = rdd1.join(rdd2)
# result: [(1, ('apple', 'red')), (2, ('banana', 'yellow'))]
  1. leftOuterJoin: 对两个键值对RDD进行左外连接操作,返回左侧RDD中所有元素以及与之匹配的右侧RDD中的元素对组成的新RDD。
rdd1 = sc.parallelize([(1, 'apple'), (2, 'banana')])
rdd2 = sc.parallelize([(1, 'red'), (3, 'yellow')])
result = rdd1.leftOuterJoin(rdd2)
# result: [(1, ('apple', 'red')), (2, ('banana', None))]
  1. rightOuterJoin: 对两个键值对RDD进行右外连接操作,返回右侧RDD中所有元素以及与之匹配的左侧RDD中的元素对组成的新RDD。
rdd1 = sc.parallelize([(1, 'apple'), (2, 'banana')])
rdd2 = sc.parallelize([(1, 'red'), (3, 'yellow')])
result = rdd1.rightOuterJoin(rdd2)
# result: [(1, ('apple', 'red')), (3, (None, 'yellow'))]

这些双Value算子能够对两个RDD进行操作,并返回一个新的RDD,可以用于求并集、交集、差集等操作,也可以进行连接操作,根据键值对进行配对。

3. Spark的Key-Value算子

Key-Value算子是指对键值对RDD进行操作的算子,这些算子主要用于处理具有键值对结构的数据,其中键位于第一列,值位于第二列。下面介绍一些常用的Key-Value算子及其功能:

  1. reduceByKey: 对具有相同键的元素进行聚合操作,返回一个新的键值对RDD。
rdd = sc.parallelize([(1, 2), (1, 3), (2, 4), (2, 5)])
result = rdd.reduceByKey(lambda x, y: x + y)
# result: [(1, 5), (2, 9)]
  1. groupByKey: 对具有相同键的元素进行分组操作,返回一个新的键值对RDD。
rdd = sc.parallelize([(1, 2), (1, 3), (2, 4), (2, 5)])
result = rdd.groupByKey()
# result: [(1, <pyspark.resultiterable.ResultIterable object at 0x7f3128a3e370>), (2, <pyspark.resultiterable.ResultIterable object at 0x7f3128a3e3d0>)]
  1. sortByKey: 按照键的顺序对RDD进行排序操作,默认升序排列。
rdd = sc.parallelize([(3, 'apple'), (1, 'banana'), (2, 'orange')])
result = rdd.sortByKey()
# result: [(1, 'banana'), (2, 'orange'), (3, 'apple')]
  1. mapValues: 对键值对RDD中的值进行操作,返回一个新的键值对RDD。
rdd = sc.parallelize([(1, 'apple'), (2, 'banana')])
result = rdd.mapValues(lambda x: 'fruit ' + x)
# result: [(1, 'fruit apple'), (2, 'fruit banana')]
  1. flatMapValues: 对键值对RDD中的值进行扁平化操作,返回一个新的键值对RDD。
rdd = sc.parallelize([(1, 'hello world'), (2, 'goodbye')])
result = rdd.flatMapValues(lambda x: x.split())
# result: [(1, 'hello'), (1, 'world'), (2, 'goodbye')]
  1. keys: 返回所有键组成的一个新的RDD。
rdd = sc.parallelize([(1, 'apple'), (2, 'banana')])
result = rdd.keys()
# result: [1, 2]
  1. values: 返回所有值组成的一个新的RDD。
rdd = sc.parallelize([(1, 'apple'), (2, 'banana')])
result = rdd.values()
# result: ['apple', 'banana']

除了上述提到的常用Key-Value算子,还有一些其他常见的Key-Value算子,它们在处理键值对RDD时也非常有用。以下是其中几个:

  1. countByKey: 统计每个键出现的次数,返回一个字典。
rdd = sc.parallelize([(1, 'apple'), (1, 'banana'), (2, 'orange'), (2, 'banana')])
result = rdd.countByKey()
# result: {1: 2, 2: 2}
  1. collectAsMap: 将键值对RDD转换为字典形式。
rdd = sc.parallelize([(1, 'apple'), (2, 'banana')])
result = rdd.collectAsMap()
# result: {1: 'apple', 2: 'banana'}
  1. lookup: 查找具有给定键的所有值,并返回一个列表。
rdd = sc.parallelize([(1, 'apple'), (2, 'banana'), (1, 'orange')])
result = rdd.lookup(1)
# result: ['apple', 'orange']
  1. foldByKey: 对具有相同键的元素进行折叠操作,类似于reduceByKey,但可以指定初始值。
rdd = sc.parallelize([(1, 2), (1, 3), (2, 4), (2, 5)])
result = rdd.foldByKey(0, lambda x, y: x + y)
# result: [(1, 5), (2, 9)]
  1. aggregateByKey: 对具有相同键的元素进行聚合操作,可以指定初始值和两个函数:一个用于局部聚合,另一个用于全局聚合。
rdd = sc.parallelize([(1, 2), (1, 3), (2, 4), (2, 5)])
result = rdd.aggregateByKey(0, lambda x, y: x + y, lambda x, y: x + y)
# result: [(1, 5), (2, 9)]

这些Key-Value算子能够对键值对RDD进行操作,实现聚合、分组、排序、映射等功能。使用这些算子可以更方便地处理具有键值对结构的数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/171066.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript基础—运算符、表达式和语句、分支语句、循环语句、综合案例-ATM存取款机

版本说明 当前版本号[20231125]。 版本修改说明20231125初版 目录 文章目录 版本说明目录JavaScript 基础 - 第2天运算符算术运算符赋值运算符自增/自减运算符比较运算符逻辑运算符运算符优先级 语句表达式和语句分支语句if 分支语句if双分支语句if 多分支语句三元运算符&am…

Kotlin学习——kt里的集合List,Set,Map List集合的各种方法之Int篇

Kotlin 是一门现代但已成熟的编程语言&#xff0c;旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作&#xff0c;并提供了多种方式在多个平台间复用代码&#xff0c;以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…

vue3(二)-基础入门

一、列表渲染 of 和 in 都是一样的效果 html代码&#xff1a; <div id"app"><ul><li v-for"item of datalist">{{ item }}</li></ul><ul><li v-for"item in dataobj">{{ item }}</li></u…

npm pnpm yarn(包管理器)的安装及镜像切换

安装Node.js 要安装npm&#xff0c;你需要先安装Node.js。 从Node.js官方网站&#xff08;https://nodejs.org&#xff09;下载并安装Node.js。 根据你的需要选择相应的版本。 一路Next&#xff0c;直到Finish 打开CMD&#xff0c;输入命令来检查Node.js和npm是否成功安装 nod…

Docker Swarm总结+基础、集群搭建维护、安全以及集群容灾(1/4)

博主介绍&#xff1a;Java领域优质创作者,博客之星城市赛道TOP20、专注于前端流行技术框架、Java后端技术领域、项目实战运维以及GIS地理信息领域。 &#x1f345;文末获取源码下载地址&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3fb;…

【WSA】无法打开 适用于 Android™ 的 Windows 子系统,因为它处于脱机状态。可能缺少存储设备,或者存储设备已断开连接。

问题描述 之前可以正常使用适用于 Android™ 的 Windows 子系统&#xff08;WSA&#xff09;&#xff0c;但突然间无法启动了。 当尝试启动WSA中的软件时&#xff0c;都会出现以下错误提示&#xff1a; 无法打开 适用于 Android™ 的 Windows 子系统&#xff0c;因为它处于脱…

chrome driver 截图和填表

昨天突然有一个需求&#xff08;自己的&#xff09;&#xff0c;想把某个网站题目主体部分翻译并保存成图片&#xff0c;开始时用了国内网站的翻译&#xff08;人工、简单翻译&#xff09;&#xff0c;后来发现很多地方翻译的不尽人意&#xff0c;于是只好用翻译插件对原始网站…

cjson库打包数据实现方法

使用 cJson 库&#xff0c;在C语言环境下&#xff0c;打包一个cJson字符串&#xff1a; int CreateArryJsonString(void) {cJSON *cJsonArr cJSON_CreateArray();cJSON *sJsonObj1 cJSON_CreateObject();cJSON_AddStringToObject(sJsonObj1, "test1", "test1…

动态规划学习——子序列问题

目录 ​编辑 一&#xff0c;最长定差子序列 1.题目 2&#xff0c;题目接口 3&#xff0c;解题思路及其代码 一&#xff0c;最长定差子序列 1.题目 给你一个整数数组 arr 和一个整数 difference&#xff0c;请你找出并返回 arr 中最长等差子序列的长度&#xff0c;该子序列…

机器学习【03】在本地浏览器使用远程服务器的Jupyter Notebook【conda环境】

1.激活虚拟环境 conda activate 虚拟环境名字2.虚拟环境下安装jupyter notebook pip install jupyter3.配置 jupyter 文件 在 Jupyter Notebook 的配置目录中生成一个配置文件 jupyter_notebook_config.py jupyter notebook --generate-config3.设置密码 jupyter notebook …

C/C++ 常用加密与解密算法

计算机安全和数据隐私是现代应用程序设计中至关重要的方面。为了确保数据的机密性和完整性&#xff0c;常常需要使用加密和解密算法。C是一种广泛使用的编程语言&#xff0c;提供了许多加密和解密算法的实现。本文将介绍一些在C中常用的加密与解密算法&#xff0c;这其中包括Xo…

操作NAND flash W25N01G

文章目录 W25N01G1 描述2 特点3 封装3.3.2 连接线 4 引脚/CSDO/WP/Hold SPI指令标准SPI命令双SPI四元SPI命令写保护 5 地址PA与PC最后一个扇区 OTP寄存器1块保护清除块保护指令* WP-E 寄存器2寄存器3BUSYP-FAILE-FAILECC位 8 命令8.1 装置ID 指令解读写状态寄存器 注意内容上拉…

企业编码生成程序Python毕业设计

&#xff08;1&#xff09;生成6位数字防伪编码。当用户在主程序界面中输入数字“1”菜单项时&#xff0c;将进入“生成6位数字防伪编码 &#xff08;213563型&#xff09;”的功能执行任务。此时要求输入生成防伪码的数量&#xff0c;可以根据需要输入生成防伪码的数量。按下&…

范围查询 range级别 继续优化思路

问题&#xff1a; 这几天工作遇到了一个问题。千万级别的表&#xff0c;每秒钟产生很多数据&#xff0c;select count(id) from table where flag 1 and create_time < 2023.11.07;分区表&#xff0c;range级别&#xff0c;已经是走create_time列上的索引&#xff0c;flag…

springboot宠物店管理系统-计算机毕设 附源码 32041

SpringBoot宠物店管理系统 摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;宠物行业当然也不例外。宠物店管理系统是以实际运用为开发背景&#xff0c;运用软件工程原理…

python pdf转txt文本、pdf转json

文章目录 一、前言二、实现方法1. 目录结构2. 代码 一、前言 此方法只能转文本格式的pdf&#xff0c;如果是图片格式的pdf需要用到ocr包&#xff0c;以后如果有这方面需求再加这个方法 二、实现方法 1. 目录结构 2. 代码 pdf2txt.py 代码如下 #!/usr/bin/env python # -*- …

【ArcGIS Pro微课1000例】0037:ArcGIS Pro中模型构建器的使用---以shp批量转kml/kmz为例

文章目录 一、ArcGIS Pro模型构建器介绍二、shp批量转kml/kmz1. 打开模型构建器2. 添加工作空间4. 添加【创建要素图层】工具5. 添加【图层转kml】工具6. 输出文件命名7. 运行模型三、模型另存为1.py文件2. 保存为工具一、ArcGIS Pro模型构建器介绍 模型构建器是一种可视化编程…

C语言从入门到精通之【表达式和语句】

1 表达式 表达式由运算符和运算对象组成&#xff0c;最简单的表达式一个单独的运算对象。每个表达式都有一个值&#xff0c;并且是根据运算符优先级规定的顺序来执行&#xff0c;以下是一些表达式&#xff1a; 4 -6 421 a*(b c/d)/20 q 5*2 x q % 3 #q > 3 2 语句 语句…

yolov5从英伟达平台移植到华为昇腾开发板上的思路

作者&#xff1a;朱金灿 来源&#xff1a;clever101的专栏 为什么大多数人学不会人工智能编程&#xff1f;>>> 最近需要将yolov5代码从英伟达平台移植到华为昇腾开发板上。搜了一些代码和资料&#xff0c;大致明白了二者的差别。 1.二者使用的模型文件不一样 yolov…